To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Rabinovich–Fabrikant equations

From Wikipedia, the free encyclopedia

Rabinovich Fabrikant 2314.png
Rabinovich Fabrikant 5212.png

The Rabinovich–Fabrikant equations are a set of three coupled ordinary differential equations exhibiting chaotic behavior for certain values of the parameters. They are named after Mikhail Rabinovich and Anatoly Fabrikant, who described them in 1979.

System description

The equations are:[1]

where α, γ are constants that control the evolution of the system. For some values of α and γ, the system is chaotic, but for others it tends to a stable periodic orbit.

Danca and Chen[2] note that the Rabinovich–Fabrikant system is difficult to analyse (due to the presence of quadratic and cubic terms) and that different attractors can be obtained for the same parameters by using different step sizes in the integration. Also, recently, a hidden attractor was discovered in the Rabinovich–Fabrikant system [3].

Equilibrium points

Graph of the regions for which equilibrium points  x ~ 1 , 2 , 3 , 4 {\displaystyle {\tilde {\mathbf {x} }}_{1,2,3,4}}  exist.
Graph of the regions for which equilibrium points exist.

The Rabinovich–Fabrikant system has five hyperbolic equilibrium points, one at the origin and four dependent on the system parameters α and γ:[2]


These equilibrium points only exist for certain values of α and γ > 0.

γ = 0.87, α = 1.1

An example of chaotic behavior is obtained for γ = 0.87 and α = 1.1 with initial conditions of (−1, 0, 0.5).[4] The correlation dimension was found to be 2.19 ± 0.01.[5] The Lyapunov exponents, λ are approximately 0.1981, 0, −0.6581 and the Kaplan–Yorke dimension, DKY ≈ 2.3010[4]

γ = 0.1

Danca and Romera[6] showed that for γ = 0.1, the system is chaotic for α = 0.98, but progresses on a stable limit cycle for α = 0.14.

3D parametric plot of the solution of the Rabinovich-Fabrikant equations for α=0.14 and γ=0.1 (limit cycle is shown by the red curve)
3D parametric plot of the solution of the Rabinovich-Fabrikant equations for α=0.14 and γ=0.1 (limit cycle is shown by the red curve)

See also


  1. ^ Rabinovich, Mikhail I.; Fabrikant, A. L. (1979). "Stochastic Self-Modulation of Waves in Nonequilibrium Media". Sov. Phys. JETP. 50: 311. Bibcode:1979JETP...50..311R.
  2. ^ a b Danca, Marius-F.; Chen, Guanrong (2004). "Birfurcation and Chaos in a Complex Model of Dissipative Medium". International Journal of Bifurcation and Chaos. World Scientific Publishing Company. 14 (10): 3409–3447. Bibcode:2004IJBC...14.3409D. doi:10.1142/S0218127404011430.
  3. ^ Danca M.-F.; Kuznetsov N.; Chen G. (2017). "Unusual dynamics and hidden attractors of the Rabinovich-Fabrikant system" (PDF). Nonlinear Dynamics. 88 (1): 791–805. arXiv:1511.07765. doi:10.1007/s11071-016-3276-1.
  4. ^ a b Sprott, Julien C. (2003). Chaos and Time-series Analysis. Oxford University Press. p. 433. ISBN 0-19-850840-9.
  5. ^ Grassberger, P.; Procaccia, I. (1983). "Measuring the strangeness of strange attractors". Physica D. 9: 189–208. Bibcode:1983PhyD....9..189G. doi:10.1016/0167-2789(83)90298-1.
  6. ^ Danca, Marius-F.; Romera, Miguel (2008). "Algorithm for Control and Anticontrol of Chaos in Continuous-Time Dynamical Systems". Dynamics of Continuous, Discrete and Impulsive Systems. Series B: Applications & Algorithms. Watam Press. 15: 155–164. hdl:10261/8868. ISSN 1492-8760.

External links

This page was last edited on 27 August 2018, at 16:42
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.