To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

RNA polymerase V

From Wikipedia, the free encyclopedia

RNA polymerase V (Pol V), previously known as RNA polymerase IVb, is a multisubunit plant specific RNA polymerase. It is required for normal function and biogenesis of small interfering RNA (siRNA). Together with RNA polymerase IV (Pol IV), Pol V is involved in an siRNA-dependent epigenetic pathway known as RNA-directed DNA methylation (RdDM), which establishes and maintains heterochromatic silencing in plants.[1]

YouTube Encyclopedic

  • 1/3
    Views:
    17 875
    25 119
    23 428
  • DNA Polymerase vs RNA Polymerase
  • RNA Polymerase
  • DNA Replication, Transcription, Translation, DNA Polymerase III, Topoisomerase, RNA Polymerase

Transcription

Structure

RNA polymerase V is composed of 12 subunits that are paralogous to RNA polymerase II (Pol II) subunits.[2] Approximately half of these subunits are shared among Pol II, IV, and V.[3] Its two largest subunits, together forming the catalytic site, make up the most conserved region sharing similarity with eukaryotic and bacterial polymerases.[2] The subunits unique to only Pol IV and V are believed to have arisen from gene duplication events that occurred prior to the evolution of land plants. The structure of Pol V has been studied in a variety of plants, including Arabidopsis thaliana, maize, and cauliflower. Affinity purification has shown significant differences in Pol V composition among these different species.[3]

In Arabidopsis, the largest subunit is known as NRPE1. This subunit contains a GW-rich AGO-hook motif that provides the ability to interact with the argonaute protein AGO4, as well as targeting of DNA methylation. While the subunit is unique to Pol V, it does contain a conserved domain common with the largest subunit of Pol IV known as Defective Chloroplasts and Leaves (DeCL), which provides an unknown function. The second largest subunit of Pol V, NRPD/E2, is shared with Pol IV. Aside from its catalytic site, Arabidopsis Pol V contains 10 smaller, noncatalytic subunits. Of these, 6 are shared with Pol II and 8 are shared with Pol IV. The fourth and seventh subunits form what is known as the "Stalk" subcomplex, while the fifth and ninth subunits form the "Jaw" subcomplex.[3]

Function

Pol V transcribes one of the two types of non-coding RNA involved in RdDM. In canonical RdDM, Pol V transcribes a scaffold RNA which base pairs with a 24-nt siRNA bound to AGO4. The AGO-hook motif in Pol V's largest subunit recruits this AGO4 to the site. Pol V transcripts are also necessary for the recruitment of chromatin remodelers to the target site. One such protein is Domains Rearranged Methyltransferase 2 (DRM2), which is believed to be recruited when the AGO4-bound siRNA base pairs with the scaffold. Once proteins are bound to this scaffold RNA, histone modification and DNA methylation may proceed.[4]

References

  1. ^ Wierzbicki, A; Haag, J; Pikaard, CS (2008). "Noncoding transcription by RNA Polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes". Cell. 135 (4): 635–648. doi:10.1016/j.cell.2008.09.035. PMC 2602798. PMID 19013275.
  2. ^ a b Ream, TS; Haag, JR; Wierzbicki, AT; Nicora, CD; Norbeck, AD; Zhu, JK; Hagen, G; Guilfoyle, TJ; Pasa-Tolić, L; Pikaard, CS (2009). "Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II". Mol Cell. 33 (2): 192–203. doi:10.1016/j.molcel.2008.12.015. PMC 2946823. PMID 19110459.
  3. ^ a b c Zhou, Ming; Law, Julie A. (2015). "RNA Pol IV and V in gene silencing: Rebel polymerases evolving away from Pol II's rules". Current Opinion in Plant Biology. 27: 154–164. Bibcode:2015COPB...27..154Z. doi:10.1016/j.pbi.2015.07.005. ISSN 1879-0356. PMC 4618083. PMID 26344361.
  4. ^ Matzke, Marjori A.; Mosher, Rebecca A. (2014). "RNA-directed DNA methylation: an epigenetic pathway of increasing complexity". Nature Reviews. Genetics. 15 (6): 394–408. doi:10.1038/nrg3683. ISSN 1471-0064. PMID 24805120. S2CID 54489227.
This page was last edited on 22 February 2024, at 12:45
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.