To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

ARHGAP32
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesARHGAP32, GC-GAP, GRIT, PX-RICS, RICS, p200RhoGAP, p250GAP, Rho GTPase activating protein 32
External IDsOMIM: 608541 MGI: 2450166 HomoloGene: 8812 GeneCards: ARHGAP32
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001142685
NM_014715
NM_001378024
NM_001378025

NM_001195632
NM_177379
NM_001370957
NM_001370958

RefSeq (protein)

NP_001136157
NP_055530
NP_001364953
NP_001364954

NP_001182561
NP_796353
NP_001357886
NP_001357887

Location (UCSC)Chr 11: 128.97 – 129.28 MbChr 9: 32.03 – 32.18 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Rho GTPase-activating protein 32 is a protein that in humans is encoded by the RICS gene.[5] RICS has two known isoforms, RICS that are expressed primarily at neurite growth cones, and at the post synaptic membranes, and PX-RICS which is more widely expressed in the endoplasmic reticulum, Golgi apparatus and endosomes.[6] The only known domain of the RICS is the RhoGAP domain, whilst PX-RICS has an additional Phox homology and SH3 domain.

Function

RICS (a.k.a. GRIT/Arhgap32) is a neuron-associated GTPase-activating protein that may regulate dendritic spine morphology and strength by modulating Rho GTPase activity.[5][6]

Isoforms

RICS

Experiments have shown that knocking down RICS, or just knocking out its GAP or C-terminal TrkA binding site, results in abnormally extended neurites, and blocks NGF regulated outgrowth.[7]

The GAP activity of RICS is known to be regulated by two phosphorylation sites, one controlled by CaMKII, and the other by RPTPa. When CaMKII is activated by Ca2+ entry through NMDA receptors and inactivates RICS through phosphorylation, which in turn increases the active GTP-bound forms of Cdc42 and Rac1. This would thereby induce, for example, remodeling of dendritic spines. Because it has been shown in some experiments that Cdc42 does not affect spine morphology, whilst others have shown that Rac1 does (via the PAK1, LIMK, CFL1 pathway), the most likely pathway is via Rac1. That RACS also binds to β-catenin and N-cadherins, in vivo within the PSD (which it binds to through PSD-95, and weak binding to the NR2 subunits) suggests that there may be another pathway for it modifying spine structure as well.[6] The RPTPa controlled phosphorylation site controls the specificity of the GAP activity, through a mechanism thought to involve movement of the c-terminal region of RICS. In the phosphorylated state, RICS can affect Rac, Rho and Cdc42, but after dephosphorylation by RPTPa it can only affect Rac. A further phosphorylation site, regulated by FYN controls the binding of RPTPa to RICS.[8]

PX-RICS

PX-RICS is the dominant isoform expressed during nervous system development. It is known to have much lower GAP activity than RICS. Although it is more generally expressed than RICS, it is still known to inhibit neuronal elongation.[9] Furthering the idea that it is a synaptically relevant isoform is that it is known to bind NR2B and PSD95 in vivo.

PX-RICS is known to be involved in transport of certain synaptic proteins which lack ER export signals, from the endoplasmic reticulum, to the Golgi apparatus. This has been shown for the β-catenin and N-cadherin, the later of which lacks the ER export signal, and the former which binds the later within the ER as a necessary but not sufficient part of its export process. PX-RICS was found to be a necessary component for the export of this complex to the Golgi and then onwards to the cellular membrane. PX-RICS is thought to do this by first localizing to the ER membrane---this it does by binding to GABARAP which binds ER, and through its Phox homology domain, which has a high binding affinity for Pi4P, the predominant phosphoinositide in the endoplasmic reticulum and Golgi apparatus. PX-RICS is then thought to bind a heterodimer of the 14-3-3 proteins encoded by YWHAZ and YWHAQ genes. The site were this binding occurs is a RSKSDP site in PX-RICS c-terminal, which is phosphorylated by CAMKII to encourage the binding.[10] It has also now been shown that membrane transport of FGFR4, a N-Cadherin binding protein, is affected by PX-RICS knockdown.[11]

Interactions

RICS (gene) has been shown to interact with:

The Mir-132 microRNA has been described as targeting the mRNA from this gene for degradation; this is thought to be important in the regulation of neuronal development.[16]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000134909 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000041444 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b "Entrez Gene: RICS Rho GTPase-activating protein".
  6. ^ a b c Okabe T, Nakamura T, Nishimura YN, Kohu K, Ohwada S, Morishita Y, Akiyama T (March 2003). "RICS, a novel GTPase-activating protein for Cdc42 and Rac1, is involved in the beta-catenin-N-cadherin and N-methyl-D-aspartate receptor signaling". J. Biol. Chem. 278 (11): 9920–7. doi:10.1074/jbc.M208872200. PMID 12531901.
  7. ^ a b c d e f g Nakamura T, Komiya M, Sone K, Hirose E, Gotoh N, Morii H, Ohta Y, Mori N (December 2002). "Grit, a GTPase-activating protein for the Rho family, regulates neurite extension through association with the TrkA receptor and N-Shc and CrkL/Crk adapter molecules". Mol. Cell. Biol. 22 (24): 8721–34. doi:10.1128/MCB.22.24.8721-8734.2002. PMC 139861. PMID 12446789.
  8. ^ Chagnon MJ, Wu CL, Nakazawa T, Yamamoto T, Noda M, Blanchetot C, Tremblay ML (November 2010). "Receptor tyrosine phosphatase sigma (RPTPσ) regulates, p250GAP, a novel substrate that attenuates Rac signaling". Cell. Signal. 22 (11): 1626–33. doi:10.1016/j.cellsig.2010.06.001. PMID 20550964.
  9. ^ Hayashi T, Okabe T, Nasu-Nishimura Y, Sakaue F, Ohwada S, Matsuura K, Akiyama T, Nakamura T (August 2007). "PX-RICS, a novel splicing variant of RICS, is a main isoform expressed during neural development". Genes Cells. 12 (8): 929–39. doi:10.1111/j.1365-2443.2007.01101.x. PMID 17663722. S2CID 22118853.
  10. ^ Nakamura T, Hayashi T, Mimori-Kiyosue Y, Sakaue F, Matsuura K, Iemura S, Natsume T, Akiyama T (May 2010). "The PX-RICS-14-3-3zeta/theta complex couples N-cadherin-beta-catenin with dynein-dynactin to mediate its export from the endoplasmic reticulum". J. Biol. Chem. 285 (21): 16145–54. doi:10.1074/jbc.M109.081315. PMC 2871483. PMID 20308060.
  11. ^ Nakamura T, Hayashi T, Nasu-Nishimura Y, Sakaue F, Morishita Y, Okabe T, Ohwada S, Matsuura K, Akiyama T (May 2008). "PX-RICS mediates ER-to-Golgi transport of the N-cadherin/beta-catenin complex". Genes Dev. 22 (9): 1244–56. doi:10.1101/gad.1632308. PMC 2335319. PMID 18451111.
  12. ^ a b c d e f Zhao C, Ma H, Bossy-Wetzel E, Lipton SA, Zhang Z, Feng GS (Sep 2003). "GC-GAP, a Rho family GTPase-activating protein that interacts with signaling adapters Gab1 and Gab2". J. Biol. Chem. 278 (36): 34641–53. doi:10.1074/jbc.M304594200. PMID 12819203.
  13. ^ a b c Nakazawa T, Watabe AM, Tezuka T, Yoshida Y, Yokoyama K, Umemori H, Inoue A, Okabe S, Manabe T, Yamamoto T (Jul 2003). "p250GAP, a novel brain-enriched GTPase-activating protein for Rho family GTPases, is involved in the N-methyl-d-aspartate receptor signaling". Mol. Biol. Cell. 14 (7): 2921–34. doi:10.1091/mbc.E02-09-0623. PMC 165687. PMID 12857875.
  14. ^ a b c d Moon SY, Zang H, Zheng Y (Feb 2003). "Characterization of a brain-specific Rho GTPase-activating protein, p200RhoGAP". J. Biol. Chem. 278 (6): 4151–9. doi:10.1074/jbc.M207789200. PMID 12454018.
  15. ^ Taniguchi S, Liu H, Nakazawa T, Yokoyama K, Tezuka T, Yamamoto T (Jun 2003). "p250GAP, a neural RhoGAP protein, is associated with and phosphorylated by Fyn". Biochem. Biophys. Res. Commun. 306 (1): 151–5. doi:10.1016/S0006-291X(03)00923-9. PMID 12788081.
  16. ^ Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S (November 2005). "A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis". Proc. Natl. Acad. Sci. U.S.A. 102 (45): 16426–31. doi:10.1073/pnas.0508448102. PMC 1283476. PMID 16260724.

Further reading

This page was last edited on 12 March 2022, at 21:17
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.