To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Quasi-homogeneous polynomial

From Wikipedia, the free encyclopedia

In algebra, a multivariate polynomial

is quasi-homogeneous or weighted homogeneous, if there exist r integers , called weights of the variables, such that the sum is the same for all nonzero terms of f. This sum w is the weight or the degree of the polynomial.

The term quasi-homogeneous comes from the fact that a polynomial f is quasi-homogeneous if and only if

for every in any field containing the coefficients.

A polynomial is quasi-homogeneous with weights if and only if

is a homogeneous polynomial in the . In particular, a homogeneous polynomial is always quasi-homogeneous, with all weights equal to 1.

A polynomial is quasi-homogeneous if and only if all the belong to the same affine hyperplane. As the Newton polytope of the polynomial is the convex hull of the set the quasi-homogeneous polynomials may also be defined as the polynomials that have a degenerate Newton polytope (here "degenerate" means "contained in some affine hyperplane").

YouTube Encyclopedic

  • 1/2
    Views:
    346
    365
  • Sariel Har-Peled (UIUC) / Quasi-Polynomial Time Approximation Scheme for Sparse Subsets of Polygons
  • 30º CBM - Teoria de Singularidades - Marcelo José Saia

Transcription

Introduction

Consider the polynomial , which is not homogeneous. However, if instead of considering we use the pair to test homogeneity, then

We say that is a quasi-homogeneous polynomial of type (3,1), because its three pairs (i1, i2) of exponents (3,3), (1,9) and (0,12) all satisfy the linear equation . In particular, this says that the Newton polytope of lies in the affine space with equation inside .

The above equation is equivalent to this new one: . Some authors[1] prefer to use this last condition and prefer to say that our polynomial is quasi-homogeneous of type .

As noted above, a homogeneous polynomial of degree d is just a quasi-homogeneous polynomial of type (1,1); in this case all its pairs of exponents will satisfy the equation .

Definition

Let be a polynomial in r variables with coefficients in a commutative ring R. We express it as a finite sum

We say that f is quasi-homogeneous of type , , if there exists some such that

whenever .

References

  1. ^ Steenbrink, J. (1977). "Intersection form for quasi-homogeneous singularities" (PDF). Compositio Mathematica. 34 (2): 211–223 See p. 211. ISSN 0010-437X.
This page was last edited on 29 October 2021, at 15:44
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.