To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Quasi-finite field

From Wikipedia, the free encyclopedia

In mathematics, a quasi-finite field[1] is a generalisation of a finite field. Standard local class field theory usually deals with complete valued fields whose residue field is finite (i.e. non-archimedean local fields), but the theory applies equally well when the residue field is only assumed quasi-finite.[2]

Formal definition

A quasi-finite field is a perfect field K together with an isomorphism of topological groups

where Ks is an algebraic closure of K (necessarily separable because K is perfect). The field extension Ks/K is infinite, and the Galois group is accordingly given the Krull topology. The group is the profinite completion of integers with respect to its subgroups of finite index.

This definition is equivalent to saying that K has a unique (necessarily cyclic) extension Kn of degree n for each integer n ≥ 1, and that the union of these extensions is equal to Ks.[3] Moreover, as part of the structure of the quasi-finite field, there is a generator Fn for each Gal(Kn/K), and the generators must be coherent, in the sense that if n divides m, the restriction of Fm to Kn is equal to Fn.

Examples

The most basic example, which motivates the definition, is the finite field K = GF(q). It has a unique cyclic extension of degree n, namely Kn = GF(qn). The union of the Kn is the algebraic closure Ks. We take Fn to be the Frobenius element; that is, Fn(x) = xq.

Another example is K = C((T)), the ring of formal Laurent series in T over the field C of complex numbers. (These are simply formal power series in which we also allow finitely many terms of negative degree.) Then K has a unique cyclic extension

of degree n for each n ≥ 1, whose union is an algebraic closure of K called the field of Puiseux series, and that a generator of Gal(Kn/K) is given by

This construction works if C is replaced by any algebraically closed field C of characteristic zero.[4]

Notes

  1. ^ (Artin & Tate 2009, §XI.3) say that the field satisfies "Moriya's axiom"
  2. ^ As shown by Mikao Moriya (Serre 1979, chapter XIII, p. 188)
  3. ^ (Serre 1979, §XIII.2 exercise 1, p. 192)
  4. ^ (Serre 1979, §XIII.2, p. 191)

References

  • Artin, Emil; Tate, John (2009) [1967], Class field theory, American Mathematical Society, ISBN 978-0-8218-4426-7, MR 2467155, Zbl 1179.11040
  • Serre, Jean-Pierre (1979), Local Fields, Graduate Texts in Mathematics, vol. 67, translated by Greenberg, Marvin Jay, Springer-Verlag, ISBN 0-387-90424-7, MR 0554237, Zbl 0423.12016
This page was last edited on 4 September 2023, at 14:08
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.