To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Quasi-fibration

From Wikipedia, the free encyclopedia

In algebraic topology, a quasifibration is a generalisation of fibre bundles and fibrations introduced by Albrecht Dold and René Thom. Roughly speaking, it is a continuous map p: EB having the same behaviour as a fibration regarding the (relative) homotopy groups of E, B and p−1(x). Equivalently, one can define a quasifibration to be a continuous map such that the inclusion of each fibre into its homotopy fibre is a weak equivalence. One of the main applications of quasifibrations lies in proving the Dold-Thom theorem.

YouTube Encyclopedic

  • 1/3
    Views:
    2 572
    338
    6 904
  • Historical Overview, Motivating Problems and Basic Background I (Dusa McDuff @ MSRI)
  • Bipartite perfect matching is in quasi-NC - Fenner
  • Mathematical Biology. 21: Hopf Bifurcations

Transcription

Definition

A continuous surjective map of topological spaces p: EB is called a quasifibration if it induces isomorphisms

for all xB, yp−1(x) and i ≥ 0. For i = 0,1 one can only speak of bijections between the two sets.

By definition, quasifibrations share a key property of fibrations, namely that a quasifibration p: EB induces a long exact sequence of homotopy groups

as follows directly from the long exact sequence for the pair (E, p−1(x)).

This long exact sequence is also functorial in the following sense: Any fibrewise map f: EE′ induces a morphism between the exact sequences of the pairs (E, p−1(x)) and (E′, p′−1(x)) and therefore a morphism between the exact sequences of a quasifibration. Hence, the diagram

commutes with f0 being the restriction of f to p−1(x) and x′ being an element of the form p′(f(e)) for an ep−1(x).

An equivalent definition is saying that a surjective map p: EB is a quasifibration if the inclusion of the fibre p−1(b) into the homotopy fibre Fb of p over b is a weak equivalence for all bB. To see this, recall that Fb is the fibre of q under b where q: EpB is the usual path fibration construction. Thus, one has

and q is given by q(e, γ) = γ(1). Now consider the natural homotopy equivalence φ : EEp, given by φ(e) = (e, p(e)), where p(e) denotes the corresponding constant path. By definition, p factors through Ep such that one gets a commutative diagram

Applying πn yields the alternative definition.

Examples

  • Every Serre fibration is a quasifibration. This follows from the Homotopy lifting property.
  • The projection of the letter L onto its base interval is a quasifibration, but not a fibration. More generally, the projection MfI of the mapping cylinder of a map f: XY between connected CW complexes onto the unit interval is a quasifibration if and only if πi(Mf, p−1(b)) = 0 = πi(I, b) holds for all iI and bB. But by the long exact sequence of the pair (Mf, p−1(b)) and by Whitehead's theorem, this is equivalent to f being a homotopy equivalence. For topological spaces X and Y in general, it is equivalent to f being a weak homotopy equivalence. Furthermore, if f is not surjective, non-constant paths in I starting at 0 cannot be lifted to paths starting at a point of Y outside the image of f in Mf. This means that the projection is not a fibration in this case.
  • The map SP(p) : SP(X) → SP(X/A) induced by the projection p: XX/A is a quasifibration for a CW pair (X, A) consisting of two connected spaces. This is one of the main statements used in the proof of the Dold-Thom theorem. In general, this map also fails to be a fibration.

Properties

The following is a direct consequence of the alternative definition of a fibration using the homotopy fibre:

Theorem. Every quasifibration p: EB factors through a fibration whose fibres are weakly homotopy equivalent to the ones of p.

A corollary of this theorem is that all fibres of a quasifibration are weakly homotopy equivalent if the base space is path-connected, as this is the case for fibrations.

Checking whether a given map is a quasifibration tends to be quite tedious. The following two theorems are designed to make this problem easier. They will make use of the following notion: Let p: EB be a continuous map. A subset Up(E) is called distinguished (with respect to p) if p: p−1(U) → U is a quasifibration.

Theorem. If the open subsets U,V and UV are distinguished with respect to the continuous map p: EB, then so is UV.[1]
Theorem. Let p: EB be a continuous map where B is the inductive limit of a sequence B1B2 ⊂ ... All Bn are moreover assumed to satisfy the first separation axiom. If all the Bn are distinguished, then p is a quasifibration.

To see that the latter statement holds, one only needs to bear in mind that continuous images of compact sets in B already lie in some Bn. That way, one can reduce it to the case where the assertion is known. These two theorems mean that it suffices to show that a given map is a quasifibration on certain subsets. Then one can patch these together in order to see that it holds on bigger subsets and finally, using a limiting argument, one sees that the map is a quasifibration on the whole space. This procedure has e.g. been used in the proof of the Dold-Thom theorem.

Notes

  1. ^ Dold and Thom (1958), Satz 2.2

References

  • Aguilar, Marcelo; Gitler, Samuel; Prieto, Carlos (2008). Algebraic Topology from a Homotopical Viewpoint. Springer Science & Business Media. ISBN 978-0-387-22489-3.
  • Dold, Albrecht; Lashof, Richard (1959), "Principal Quasifibrations and Fibre Homotopy Equivalence of Bundles", Illinois Journal of Mathematics, 2 (2): 285–305
  • Dold, Albrecht; Thom, René (1958), "Quasifaserungen und unendliche symmetrische Produkte", Annals of Mathematics, Second Series, 67 (2): 239–281, doi:10.2307/1970005, ISSN 0003-486X, JSTOR 1970005, MR 0097062
  • Hatcher, Allen (2002). Algebraic Topology. Cambridge University Press. ISBN 978-0-521-79540-1.
  • May, J. Peter (1990), "Weak Equivalences and Quasifibrations", Springer Lecture Notes, 1425: 91–101
  • Piccinini, Renzo A. (1992). Lectures on Homotopy Theory. Elsevier. ISBN 9780080872827.

External links

This page was last edited on 22 January 2024, at 02:35
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.