To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Sheaf on an algebraic stack

From Wikipedia, the free encyclopedia

In algebraic geometry, a quasi-coherent sheaf on an algebraic stack is a generalization of a quasi-coherent sheaf on a scheme. The most concrete description is that it is a data that consists of, for each a scheme S in the base category and in , a quasi-coherent sheaf on S together with maps implementing the compatibility conditions among 's.

For a Deligne–Mumford stack, there is a simpler description in terms of a presentation : a quasi-coherent sheaf on is one obtained by descending a quasi-coherent sheaf on U.[1] A quasi-coherent sheaf on a Deligne–Mumford stack generalizes an orbibundle (in a sense).

Constructible sheaves (e.g., as ℓ-adic sheaves) can also be defined on an algebraic stack and they appear as coefficients of cohomology of a stack.

YouTube Encyclopedic

  • 1/3
    Views:
    1 202
    2 849
    345
  • Introduction to Geometric Langlands | Dennis Gaitsgory | Лекториум
  • Tutorial on Sheaves in Data Analytics: Lecture 3: What is a sheaf?
  • Schemes 42: Very ample sheaves

Transcription

Definition

The following definition is (Arbarello, Cornalba & Griffiths 2011, Ch. XIII., Definition 2.1.)

Let be a category fibered in groupoids over the category of schemes of finite type over a field with the structure functor p. Then a quasi-coherent sheaf on is the data consisting of:

  1. for each object , a quasi-coherent sheaf on the scheme ,
  2. for each morphism in and in the base category, an isomorphism
satisfying the cocycle condition: for each pair ,
equals .

(cf. equivariant sheaf.)

Examples

ℓ-adic formalism

The ℓ-adic formalism (theory of ℓ-adic sheaves) extends to algebraic stacks.

See also

  • Hopf algebroid - encodes the data of quasi-coherent sheaves on a prestack presentable as a groupoid internal to affine schemes (or projective schemes using graded Hopf algebroids)

Notes

References

  • Arbarello, Enrico; Griffiths, Phillip (2011). Geometry of algebraic curves. Vol. II, with a contribution by Joseph Daniel Harris. Grundlehren der mathematischen Wissenschaften. Vol. 268. doi:10.1007/978-3-540-69392-5. ISBN 978-3-540-42688-2. MR 2807457.
  • Behrend, Kai A. (2003). "Derived 𝑙-adic categories for algebraic stacks". Memoirs of the American Mathematical Society. 163 (774). doi:10.1090/memo/0774.
  • Laumon, Gérard; Moret-Bailly, Laurent (2000). Champs algébriques. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Vol. 39. Berlin, New York: Springer-Verlag. doi:10.1007/978-3-540-24899-6. ISBN 978-3-540-65761-3. MR 1771927.
  • Olsson, Martin (2007). "Sheaves on Artin stacks". Journal für die reine und angewandte Mathematik (Crelle's Journal). 2007 (603): 55–112. doi:10.1515/CRELLE.2007.012. S2CID 15445962. Editorial note: This paper corrects a mistake in Laumon and Moret-Bailly's Champs algébriques.
  • Rydh, David (2016). "Approximation of Sheaves on Algebraic Stacks". International Mathematics Research Notices. 2016 (3): 717–737. arXiv:1408.6698. doi:10.1093/imrn/rnv142.

External links


This page was last edited on 13 August 2023, at 04:17
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.