To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Quasi-analytic function

From Wikipedia, the free encyclopedia

In mathematics, a quasi-analytic class of functions is a generalization of the class of real analytic functions based upon the following fact: If f is an analytic function on an interval [a,b] ⊂ R, and at some point f and all of its derivatives are zero, then f is identically zero on all of [a,b]. Quasi-analytic classes are broader classes of functions for which this statement still holds true.

YouTube Encyclopedic

  • 1/3
    Views:
    185 861
    776 991
    466 121
  • Mod-01 Lec-01 Analytic functions of a complex variable (Part I)
  • Visualizing the Riemann zeta function and analytic continuation
  • All possible pythagorean triples, visualized

Transcription

Definitions

Let be a sequence of positive real numbers. Then the Denjoy-Carleman class of functions CM([a,b]) is defined to be those f ∈ C([a,b]) which satisfy

for all x ∈ [a,b], some constant A, and all non-negative integers k. If Mk = 1 this is exactly the class of real analytic functions on [a,b].

The class CM([a,b]) is said to be quasi-analytic if whenever f ∈ CM([a,b]) and

for some point x ∈ [a,b] and all k, then f is identically equal to zero.

A function f is called a quasi-analytic function if f is in some quasi-analytic class.

Quasi-analytic functions of several variables

For a function and multi-indexes , denote , and

and

Then is called quasi-analytic on the open set if for every compact there is a constant such that

for all multi-indexes and all points .

The Denjoy-Carleman class of functions of variables with respect to the sequence on the set can be denoted , although other notations abound.

The Denjoy-Carleman class is said to be quasi-analytic when the only function in it having all its partial derivatives equal to zero at a point is the function identically equal to zero.

A function of several variables is said to be quasi-analytic when it belongs to a quasi-analytic Denjoy-Carleman class.

Quasi-analytic classes with respect to logarithmically convex sequences

In the definitions above it is possible to assume that and that the sequence is non-decreasing.

The sequence is said to be logarithmically convex, if

is increasing.

When is logarithmically convex, then is increasing and

for all .

The quasi-analytic class with respect to a logarithmically convex sequence satisfies:

  • is a ring. In particular it is closed under multiplication.
  • is closed under composition. Specifically, if and , then .

The Denjoy–Carleman theorem

The Denjoy–Carleman theorem, proved by Carleman (1926) after Denjoy (1921) gave some partial results, gives criteria on the sequence M under which CM([a,b]) is a quasi-analytic class. It states that the following conditions are equivalent:

  • CM([a,b]) is quasi-analytic.
  • where .
  • , where Mj* is the largest log convex sequence bounded above by Mj.

The proof that the last two conditions are equivalent to the second uses Carleman's inequality.

Example: Denjoy (1921) pointed out that if Mn is given by one of the sequences

then the corresponding class is quasi-analytic. The first sequence gives analytic functions.

Additional properties

For a logarithmically convex sequence the following properties of the corresponding class of functions hold:

  • contains the analytic functions, and it is equal to it if and only if
  • If is another logarithmically convex sequence, with for some constant , then .
  • is stable under differentiation if and only if .
  • For any infinitely differentiable function there are quasi-analytic rings and and elements , and , such that .

Weierstrass division

A function is said to be regular of order with respect to if and . Given regular of order with respect to , a ring of real or complex functions of variables is said to satisfy the Weierstrass division with respect to if for every there is , and such that

with .

While the ring of analytic functions and the ring of formal power series both satisfy the Weierstrass division property, the same is not true for other quasi-analytic classes.

If is logarithmically convex and is not equal to the class of analytic function, then doesn't satisfy the Weierstrass division property with respect to .

References

  • Carleman, T. (1926), Les fonctions quasi-analytiques, Gauthier-Villars
  • Cohen, Paul J. (1968), "A simple proof of the Denjoy-Carleman theorem", The American Mathematical Monthly, Mathematical Association of America, 75 (1): 26–31, doi:10.2307/2315100, ISSN 0002-9890, JSTOR 2315100, MR 0225957
  • Denjoy, A. (1921), "Sur les fonctions quasi-analytiques de variable réelle", C. R. Acad. Sci. Paris, 173: 1329–1331
  • Hörmander, Lars (1990), The Analysis of Linear Partial Differential Operators I, Springer-Verlag, ISBN 3-540-00662-1
  • Leont'ev, A.F. (2001) [1994], "Quasi-analytic class", Encyclopedia of Mathematics, EMS Press
  • Solomentsev, E.D. (2001) [1994], "Carleman theorem", Encyclopedia of Mathematics, EMS Press
This page was last edited on 7 November 2023, at 09:05
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.