To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Quantifier rank

From Wikipedia, the free encyclopedia

In mathematical logic, the quantifier rank of a formula is the depth of nesting of its quantifiers. It plays an essential role in model theory.

Notice that the quantifier rank is a property of the formula itself (i.e. the expression in a language). Thus two logically equivalent formulae can have different quantifier ranks, when they express the same thing in different ways.

Definition

Quantifier Rank of a Formula in First-order language (FO)

Let φ be a FO formula. The quantifier rank of φ, written qr(φ), is defined as

  • , if φ is atomic.
  • .
  • .
  • .
  • .

Remarks

  • We write FO[n] for the set of all first-order formulas φ with .
  • Relational FO[n] (without function symbols) is always of finite size, i.e. contains a finite number of formulas
  • Notice that in Prenex normal form the Quantifier Rank of φ is exactly the number of quantifiers appearing in φ.

Quantifier Rank of a higher order Formula

  • For Fixpoint logic, with a least fix point operator LFP:

Examples

  • A sentence of quantifier rank 2:
  • A formula of quantifier rank 1:
  • A formula of quantifier rank 0:
  • A sentence, equivalent to the previous, although of quantifier rank 2:

See also

References

  • Ebbinghaus, Heinz-Dieter; Flum, Jörg (1995), Finite Model Theory, Springer, ISBN 978-3-540-60149-4.
  • Grädel, Erich; Kolaitis, Phokion G.; Libkin, Leonid; Maarten, Marx; Spencer, Joel; Vardi, Moshe Y.; Venema, Yde; Weinstein, Scott (2007), Finite model theory and its applications, Texts in Theoretical Computer Science. An EATCS Series, Berlin: Springer-Verlag, p. 133, ISBN 978-3-540-00428-8, Zbl 1133.03001.

External links

This page was last edited on 4 March 2024, at 08:28
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.