To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

# q-Weibull distribution

Parameters Probability density function Cumulative distribution function ${\displaystyle q<2}$ shape (real) ${\displaystyle \lambda >0}$ rate (real) ${\displaystyle \kappa >0\,}$ shape (real) ${\displaystyle x\in [0;+\infty )\!{\text{ for }}q\geq 1}$ ${\displaystyle x\in [0;{\lambda \over {(1-q)^{1/\kappa }}}){\text{ for }}q<1}$ ${\displaystyle {\begin{cases}(2-q){\frac {\kappa }{\lambda }}\left({\frac {x}{\lambda }}\right)^{\kappa -1}e_{q}^{-(x/\lambda )^{\kappa }}&x\geq 0\\0&x<0\end{cases}}}$ ${\displaystyle {\begin{cases}1-e_{q'}^{-(x/\lambda ')^{\kappa }}&x\geq 0\\0&x<0\end{cases}}}$ (see article)

In statistics, the q-Weibull distribution is a probability distribution that generalizes the Weibull distribution and the Lomax distribution (Pareto Type II). It is one example of a Tsallis distribution.

• 1/5
Views:
12 670
101 910
329
38 432
268 252
• ✪ Mod-01 Lec-39 Exponential failure law, Weibull law
• ✪ StatQuest: Quantile-Quantile Plots (QQ plots), Clearly Explained
• ✪ Probability and Random Variable I Exponential Probability Density Function
• ✪ Lecture 14: Location, Scale, and LOTUS | Statistics 110
• ✪ Cumulative Distribution Function - Probability

## Characterization

### Probability density function

The probability density function of a q-Weibull random variable is:[1]

${\displaystyle f(x;q,\lambda ,\kappa )={\begin{cases}(2-q){\frac {\kappa }{\lambda }}\left({\frac {x}{\lambda }}\right)^{\kappa -1}e_{q}(-(x/\lambda )^{\kappa })&x\geq 0,\\0&x<0,\end{cases}}}$

where q < 2, ${\displaystyle \kappa }$ > 0 are shape parameters and λ > 0 is the scale parameter of the distribution and

${\displaystyle e_{q}(x)={\begin{cases}\exp(x)&{\text{if }}q=1,\\[6pt][1+(1-q)x]^{1/(1-q)}&{\text{if }}q\neq 1{\text{ and }}1+(1-q)x>0,\\[6pt]0^{1/(1-q)}&{\text{if }}q\neq 1{\text{ and }}1+(1-q)x\leq 0,\\[6pt]\end{cases}}}$

is the q-exponential[1][2][3]

### Cumulative distribution function

The cumulative distribution function of a q-Weibull random variable is:

${\displaystyle {\begin{cases}1-e_{q'}^{-(x/\lambda ')^{\kappa }}&x\geq 0\\0&x<0\end{cases}}}$

where

${\displaystyle \lambda '={\lambda \over (2-q)^{1 \over \kappa }}}$
${\displaystyle q'={1 \over (2-q)}}$

## Mean

The mean of the q-Weibull distribution is

${\displaystyle \mu (q,\kappa ,\lambda )={\begin{cases}\lambda \,\left(2+{\frac {1}{1-q}}+{\frac {1}{\kappa }}\right)(1-q)^{-{\frac {1}{\kappa }}}\,B\left[1+{\frac {1}{\kappa }},2+{\frac {1}{1-q}}\right]&q<1\\\lambda \,\Gamma (1+{\frac {1}{\kappa }})&q=1\\\lambda \,(2-q)(q-1)^{-{\frac {1+\kappa }{\kappa }}}\,B\left[1+{\frac {1}{\kappa }},-\left(1+{\frac {1}{q-1}}+{\frac {1}{\kappa }}\right)\right]&1

where ${\displaystyle B()}$ is the Beta function and ${\displaystyle \Gamma ()}$ is the Gamma function. The expression for the mean is a continuous function of q over the range of definition for which it is finite.

## Relationship to other distributions

The q-Weibull is equivalent to the Weibull distribution when q = 1 and equivalent to the q-exponential when ${\displaystyle \kappa =1}$

The q-Weibull is a generalization of the Weibull, as it extends this distribution to the cases of finite support (q < 1) and to include heavy-tailed distributions ${\displaystyle (q\geq 1+{\frac {\kappa }{\kappa +1}})}$.

The q-Weibull is a generalization of the Lomax distribution (Pareto Type II), as it extends this distribution to the cases of finite support and adds the ${\displaystyle \kappa }$ parameter. The Lomax parameters are:

${\displaystyle \alpha ={{2-q} \over {q-1}}~,~\lambda _{\text{Lomax}}={1 \over {\lambda (q-1)}}}$

As the Lomax distribution is a shifted version of the Pareto distribution, the q-Weibull for ${\displaystyle \kappa =1}$ is a shifted reparameterized generalization of the Pareto. When q > 1, the q-exponential is equivalent to the Pareto shifted to have support starting at zero. Specifically:

${\displaystyle {\text{If }}X\sim \operatorname {{\mathit {q}}-Weibull} (q,\lambda ,\kappa =1){\text{ and }}Y\sim \left[\operatorname {Pareto} \left(x_{m}={1 \over {\lambda (q-1)}},\alpha ={{2-q} \over {q-1}}\right)-x_{m}\right],{\text{ then }}X\sim Y\,}$