To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Project Gemini

From Wikipedia, the free encyclopedia

Project Gemini
CountryUnited States
Program history
Cost$1.3 billion (1967)[1]
First flightApril 8, 1964
First crewed flightMarch 23, 1965
Last flightNovember 11–15, 1966
Partial failures2:
Launch site(s)Cape Kennedy Air Force Station, Florida LC-19
Vehicle information
Vehicle typeCapsule
Crew vehicleGemini
Crew capacity2
Launch vehicle(s)

Project Gemini was NASA's second human spaceflight program. Conducted between projects Mercury and Apollo, Gemini started in 1961 and concluded in 1966. The Gemini spacecraft carried a two-astronaut crew. Ten Gemini crews flew low Earth orbit (LEO) missions during 1965 and 1966, putting the United States in the lead during the Cold War Space Race against the Soviet Union.

Gemini's objective was the development of space travel techniques to support the Apollo mission to land astronauts on the Moon. It performed missions long enough for a trip to the Moon and back, perfected working outside the spacecraft with extra-vehicular activity (EVA), and pioneered the orbital maneuvers necessary to achieve space rendezvous and docking. With these new techniques proven by Gemini, Apollo could pursue its prime mission without doing these fundamental exploratory operations.

All Gemini flights were launched from Launch Complex 19 (LC-19) at Cape Kennedy Air Force Station in Florida. Their launch vehicle was the Gemini–Titan II, a modified Intercontinental Ballistic Missile (ICBM).[Note 1] Gemini was the first program to use the newly built Mission Control Center at the Houston Manned Spacecraft Center for flight control.[Note 2]

The astronaut corps that supported Project Gemini included the "Mercury Seven", "The New Nine", and the 1963 astronaut class. During the program, three astronauts died in air crashes during training, including the prime crew for Gemini 9. This mission was flown by the backup crew, the only time that has happened in NASA's history to date.

Gemini was robust enough that the United States Air Force planned to use it for the Manned Orbital Laboratory (MOL) program, which was later canceled. Gemini's chief designer, Jim Chamberlin, also made detailed plans for cislunar and lunar landing missions in late 1961. He believed that Gemini spacecraft could fly in lunar operations before Project Apollo, and cost less. NASA's administration did not approve those plans. In 1969, McDonnell-Douglas proposed a "Big Gemini" that could have been used to shuttle up to 12 astronauts to the planned space stations in the Apollo Applications Project (AAP). The only AAP project funded was Skylab – which used existing spacecraft and hardware – thereby eliminating the need for Big Gemini.

YouTube Encyclopedic

  • 1/4
    18 694
    17 502
    2 916
  • ✪ Adobe MAX 2018: An Early Look at Project Gemini (Coming Soon) | Adobe Creative Cloud
  • ✪ Project Gemini - preparing for Apollo.


The incredible effort to bring Photoshop to the iPad unlocked a lot of innovation at Adobe and prompted the question: What other creative endeavors can we transform on a touch surface? And that got us thinking about an activity that underlies everything we do as creative people. For most of you, it's probably what initially kindled your love for creativity. I'm talking about drawing. From the earliest cave paintings 40,000 years ago, to the Renaissance, to back-of-the-napkin sketches, or a new app today, drawing and painting are two of the most fundamental means of human expression and connection. Complex illustrations, full-length films, websites, even experiences in new mediums like AR start out with a drawing. And drawing and painting have been a part of Adobe tools for decades. Photoshop has had brushes since its first release, and drawing and painting are still among the most common activities in Photoshop. But we believe that drawing and painting deserve a specialized digital tool that brings the field to a whole new level. And that's why we're excited to preview Project Gemini, our new dedicated drawing and painting application for the iPad. When we set out to build that tool, we asked ourselves, "Who is the right person to help create an amazing drawing and painting application?" And we were lucky enough to bring on someone who has created more than 1,600 digital brushes, brushes that have been downloaded more than a million times. His name is Kyle Webster. You may know him as the brain behind Kyle's brushes and he is a core part of the team building Project Gemini. Please welcome Kyle Webster and our design leader for Creative Cloud, someone who I've worked with for many years, Eric Snowden, to show you Project Gemini. Eric and Kyle. (applause) Great, thank you, Scott. So, we're really excited to share Project Gemini with all of you for the first time today. So, like Scott just said, Gemini is a dedicated painting and drawing application that takes Adobe's decades of experience across multiple tools in this field and brings it into a single application that is powerful enough for professionals but easy enough for anyone to pick up and start using. So, I'm gonna launch Project Gemini, and this should look really familiar to what you just saw in the Photoshop demo, because Gemini can actually open up Photoshop documents as well. So that's what I'm gonna do, I'm gonna open up this PSD inside of Gemini, and this is something that we started on the desktop and we're bringing onto the iPad to continue working. All of my layers come in full fidelity. And so this should look pretty familiar to the other apps we've shown, but there's a couple of really important differences in Gemini. We've really thought specifically about workflows for illustrators. And the first thing hopefully you'll notice in the upper left-hand corner is we have three different brush icons, and Kyle's gonna show off some of those capabilities in just a minute, but we've really rethought all of the things that illustrators do hundreds of times a day like selecting brushes and selecting colors. So I want to draw on this image here, I'm gonna add some additional leaves. And so I'm gonna tap to select a brush, to open my menu, tap again to select leaves, tap again to open my color panel, and I select a really bright color, tap to dismiss, and then I start drawing, so there's actually a lot of tapping, and especially if you're switching brushes and colors hundreds of times a day, that becomes really, really tedious. So, in Gemini, you can actually pull the panels off and dock them out on the screen to keep them open. You can dock them to the left-hand side. I can even open up multiple panels at the same time, close my layers. I've got a ton of control over how I lay out the application. I can make it work the way I need it to work. So, my preferred way of drawing, actually, is a little bit more minimal. I love Gemini's fullscreen mode. So when I go into fullscreen mode, all of the tools just get out of my way. I've got a very minimal UI where I've got a tool switcher, a touch modifier just like in Photoshop, and I've got my layers on the right-hand side. So I'm going to find this leaf, I think, at the bottom here, and I want to make it a little bit larger. It's just too small for this composition. So, I select the leaf, I tap and my toolbar expands, I select my scale tool, scale it up, click Done. So I'm actually doing real work within fullscreen modes. In a lot of other applications, you're having to jump in and out of fullscreen mode to switch tools. It can be really tedious if you're drawing all day long. The last thing I want to show is I'm gonna erase some of these leaves. I went a little bit crazy with this Photoshop brush here, and I have leaves sort of spilling over the edge of the vase. In order to do that, I long-press here, I can select a different brush, and then, if I hold down my touch modifier, it turns into the eraser just like Photoshop, I can start erasing. So I can draw, I can erase, I can draw and erase just by holding down one finger. Just a really simple way to work within Gemini. So, once I'm happy with this, if I want to save this, all I have to do is close out of the document. Everything in Gemini is stored in Creative Cloud automatically. And so once that's saved, I can go over to my desktop, so I've got my Mac here, and I have the exact same file over on the Mac, I've got all of my layers in tact, I've got all of the same brushes. Again, a full fidelity file. So Gemini has true round-tripping back and forth with Photoshop, so you can use them together, which is really amazing. So, that's a lot of workflow stuff that's very specific to illustrators, and actually none of that really matters if Gemini doesn't have the best marks, so I'm gonna ask Kyle to show off some of the new brushing capabilities inside Project Gemini. Great, thank you, Eric. Okay, so, friends, there is such a rich ecosystem built around the power of the Photoshop brush engine. In fact, there are more Photoshop brushes floating out there in the world than any other kind of digital brush, and it's because they're just so fun to use. And I'm gonna use one of my favorites right now here in Gemini to start painting a little spatter background for an illustration. You can see that the colors and the textures are changing subtly as I tap the screen and that's only possible with a Photoshop brush thanks to Color Dynamics. I'm gonna select a little pink here, add a little bit more color, look how fun that is, and then I think I'll use a little bit of purple, there we go, lovely, lovely. As much as I love Photoshop brushes and I can talk about them all day and all night, when I want precision, when I want crisp, clean line art, I reach for a Vector brush, and guess what? In Gemini, I can just select a Vector brush and start drawing. You have Vector brushes and Raster brushes playing together in the same app. So, when I start to draw with a Vector brush, Gemini intelligently instantly creates a separate layer for my Vector Art, and because it's Vector Art, if I want to scale it up a little bit, rotate it, there we go, there's no pixelization because it's infinitely scalable. So I'm gonna draw a little happy face here, and if I want to later take this line art that I've created here in Gemini and port it over to Illustrator and do a little bit more work, I can, of course, do that. I'll bounce back to a Photoshop brush here, and Gemini says, "Oh, you're using a Photoshop brush! No problem, I'll pop you back to the most recently used Raster layer," and that's exactly what it does, so I don't have to think about layer management there. No problemo. Now we've even thought about tools that you've been using for years and years and rethought how they work. For example, the lasso tool, one of my favorites. I'll zoom in here and I'll start to make a selection around the edge of her face, and then I'm gonna lift up the stylus, say hello to everybody and wave, and lo and behold, I have not lost my selection. I can just keep drawing it whenever I'm ready. Isn't that nice? Yes. (applause) And I love the polygonal lasso tool, but I don't like having to switch back and forth, so once again, I can lift up my stylus and all I have to do is tap on the screen, and anywhere I tap, I am instantly creating a straight edge selection as part of that entire selection, beautiful. So this is the lasso tool we've all been dreaming of, right? Now, if I want to invert my selection, because I want to paint on the left side of her face and make sure I don't paint on her face, you'll see that at the very bottom of the screen, all of the most commonly used actions immediately appear. So I can invert, then I can select that same lovely spatter brush, I think I'll use a little bit of blue here, and I'll just paint here outside the face. No worries. And just to unify my color palette, I'll use a bit more of that pink, there we go, and in a matter of just a couple of minutes, we have an illustration that was created with Photoshop brushes and Vector brushes playing harmoniously in the same drawing environment. That's wonderful. Yes, I'm happy, too. (applause) But we have completely rethought brushes and brush behavior altogether with Gemini, and I'm gonna show you what I mean. Very excited about this. We have a completely new category of brushes you'll notice up here in Gemini, and that is the live brushes. And I'll start with the oil paints. Yes, I said oils. Now, since we're in Los Angeles and the weather is beautiful and warm and you could eat ice cream pretty much any time of the year, let's paint a little ice cream. Now, I'm just gonna start painting, and I'm using very light pressure. And you can see that the canvas texture is coming through as I paint, and that's really beautiful. Let me zoom in a little bit. Right? But I can actually decide that I want to paint with super thick paint, so I'll just crank the thickness all the way up to 100, and now watch what happens. Look at this ooey, gooey paint. Look at that! It remains wet for as long as I want it to, it's totally active, and I can paint with this kind of oil paint for as long as my heart desires, I can create layers with it, and watch what happens when I mix some color. I'll use some purple here in the bottom right. Ooh. It picks up some of the pink that's already there, it blends it in. How fun is that? (applause) And I think I'll add a little highlight up here and I can just smudge it all in there. Look at that, so fun, oh, it's so fun. All right, I'm gonna get stuck playing with this for way too long, but let's continue painting our ice cream cone. I'll zoom out a little bit, we'll add a little smudgy bit down there, add a little highlight just across, and, again, we're in a digital environment. I don't have to just paint on the same layer. I'll just create a layer underneath it to paint my cone. Can't do that in real life. There's a cone, I can blend in some orange. Ooh, look at that. And then I'll just size my brush way down, and watch this, I'm gonna carve right into it to make my waffle cone. And see it pull some of that color with it? So fun, let me zoom in so you can see that. Look at this! It's bananas. Now, that's really fun and, yes, I could do that all day as well, but we didn't stop with oil paints, because everybody loves watercolor. So, let me show you what we did with our watercolors. Maybe you are watching the old LBs and you don't want to have an ice cream, maybe you'd rather have a pear. So let me paint a little pear for you with our new watercolors, watch this. I'm gonna grab some yellow, and as I start to paint, the color actually blends and flows directly into the areas that are wet, look at this. This is real live watercolor. Now I'm gonna grab some orange and you'll see how the color pulls into where I've already painted and flows naturally. I can control exactly how much water I have on my brush at any time with this handy-dandy slider right here. We'll add some green right here on the right, finish out that shape. Look how pretty that is. Can you all see that moving? It's moving in real time. So much fun. Thank you, and let's put a little stem in there. You can see the paint just kind of-- ooh, that's beautiful. And then I'll pull that stem out and then you can watch it just flow in there. And one of my favorite things to do with real watercolors is to just use water. Don't bother with the pigment at all. So I'm just gonna suck out all the color of that brush and now it's just pure water, and watch what happens when I drag the brush just along the bottom here, and when it makes contact with the pear, look at that. All that paint just goes flowing into whatever area of the paper is wet. So you can do wet into wet painting just like real watercolor. And that is really fun. And here's something you can't do in the real world. I think I'll add a highlight by just erasing! Ta-da! So, let's just look at all these options. We have, in Gemini, three different incredibly powerful categories of brushes. We have Photoshop brushes, we have infinitely scalable, precise Vector brushes, and now we have groundbreaking, incredible natural media emulation brushes with our new live brushes. This makes Gemini a world-class tool for illustrators everywhere, and I can't wait to see what you all make with it. Thank you. (applause) So, thank you, Eric and Kyle, two amazing artists at work, huh? One more round of applause for that. I could have just watched that forever. (applause) And I feel like the paints look gooey. Like, if you actually touch the iPad, your hands would get wet. It's just an extraordinary technology to see come to life. So, to summarize Project Gemini, it brings together true, freehand Vector and Raster illustration. The live brushes recreate watercolor and oil-based painting in an amazingly lifelike way. You'll be able to use all of your favorite Photoshop brushes synced through Creative Cloud. Project Gemini will come to iOS next year, and while Gemini is powerful enough for creative professionals, we also think its versatility and just plain fun will spark a renewed interest in drawing and painting. So Photoshop and Project Gemini kick off a new era as Creative Cloud becomes available on multiple devices and platforms, including Windows, iOS, and Android, to liberate your creativity. That's really what we mean by liberate your creativity.



The constellation for which the project was named is commonly pronounced /ˈɛmɪn/, the last syllable rhyming with eye. However, staff of the Manned Spacecraft Center, including the astronauts, tended to pronounce the name /ˈɛmɪni/, rhyming with knee. NASA's public affairs office issued a statement in 1965 declaring "Jeh-mih-nee" to be the "official" pronunciation.[2] Gus Grissom, acting as Houston capsule communicator when Ed White performed his spacewalk on Gemini 4, is heard on flight recordings pronouncing the spacecraft's call sign "Jeh-mih-nee 4", and the NASA pronunciation is used in the movie First Man.[2]

Program origins and objectives

The Apollo program was conceived in early 1960 as a three-man spacecraft to follow Project Mercury. Jim Chamberlin, the head of engineering at the Space Task Group (STG), was assigned in February 1961 to start working on a bridge program between Mercury and Apollo.[3] He presented two initial versions of a two-man spacecraft, then designated Mercury Mark II, at a NASA retreat at Wallops Island in March 1961.[3] Scale models were shown in July 1961 at the McDonnell Aircraft Corporation's offices in St. Louis.[3]

After Apollo was chartered to land men on the Moon by President John F. Kennedy on May 25, 1961, it became evident to NASA officials that a follow-on to the Mercury program was required to develop certain spaceflight capabilities in support of Apollo. NASA approved the two-man program rechristened Project Gemini (Latin for "twins"), in reference to the third constellation of the Zodiac with its twin stars Castor and Pollux, on December 7, 1961.[3] McDonnell Aircraft was contracted to build it on December 22, 1961.[4] The program was publicly announced on January 3, 1962, with these major objectives:[5]

  • To demonstrate endurance of humans and equipment in spaceflight for extended periods, at least eight days required for a Moon landing, to a maximum of two weeks
  • To effect rendezvous and docking with another vehicle, and to maneuver the combined spacecraft using the propulsion system of the target vehicle
  • To demonstrate Extra-Vehicular Activity (EVA), or space-"walks" outside the protection of the spacecraft, and to evaluate the astronauts' ability to perform tasks there
  • To perfect techniques of atmospheric reentry and touchdown at a pre-selected location on land[Note 3]


The Canadian Jim Chamberlin designed the Gemini capsule, which carried a crew of two. He was previously the chief aerodynamicist on Avro Canada's Avro Arrow fighter interceptor program.[6] Chamberlin joined NASA along with 25 senior Avro engineers after cancellation of the Arrow program, and became head of the U.S. Space Task Group's engineering division in charge of Gemini.[6][7] The prime contractor was McDonnell Aircraft Corporation, which was also the prime contractor for the Project Mercury capsule.[8]

Astronaut Gus Grissom was heavily involved in the development and design of the Gemini spacecraft. What other Mercury astronauts dubbed "Gusmobile" was so designed around Grissom's 5'6" body that, when NASA discovered in 1963 that 14 of 16 astronauts would not fit in the spacecraft, the interior had to be redesigned.[9] Grissom wrote in his posthumous 1968 book Gemini! that the realization of Project Mercury's end and the unlikelihood of his having another flight in that program prompted him to focus all of his efforts on the upcoming Gemini program.

The Gemini program was managed by the Manned Spacecraft Center, located in Houston, Texas, under direction of the Office of Manned Space Flight, NASA Headquarters, Washington, D.C. Dr. George E. Mueller, Associate Administrator of NASA for Manned Space Flight, served as acting director of the Gemini program. William C. Schneider, Deputy Director of Manned Space Flight for Mission Operations, served as mission director on all Gemini flights beginning with Gemini 6A.

Guenter Wendt was a McDonnell engineer who supervised launch preparations for both the Mercury and Gemini programs and would go on to do the same when the Apollo program launched crews. His team was responsible for completion of the complex pad close-out procedures just prior to spacecraft launch, and he was the last person the astronauts would see prior to closing the hatch. The astronauts appreciated his taking absolute authority over, and responsibility for, the condition of the spacecraft and developed a good-humored rapport with him.[10]


A cutaway illustration of the Gemini spacecraft
A cutaway illustration of the Gemini spacecraft

NASA selected McDonnell Aircraft, which had been the prime contractor for the Project Mercury capsule, in 1961 to build the Gemini capsule, the first of which was delivered in 1963. The spacecraft was 18 feet 5 inches (5.61 m) long and 10 feet (3.0 m) wide, with a launch weight varying from 7,100 to 8,350 pounds (3,220 to 3,790 kg).[11]

The Gemini crew capsule (referred to as the Reentry Module) was essentially an enlarged version of the Mercury capsule. Unlike Mercury, the retrorockets, electrical power, propulsion systems, oxygen, and water were located in a detachable Adapter Module behind the Reentry Module. A major design improvement in Gemini was to locate all internal spacecraft systems in modular components, which could be independently tested and replaced when necessary, without removing or disturbing other already tested components.

Unablated Gemini heat shield
Unablated Gemini heat shield
Ablated Gemini heat shield
Ablated Gemini heat shield

Reentry module

Many components in the capsule itself were reachable through their own small access doors. Unlike Mercury, Gemini used completely solid-state electronics, and its modular design made it easy to repair.[12]

Gemini's emergency launch escape system did not use an escape tower powered by a solid-fuel rocket, but instead used aircraft-style ejection seats. The tower was heavy and complicated, and NASA engineers reasoned that they could do away with it as the Titan II's hypergolic propellants would burn immediately on contact. A Titan II booster explosion had a smaller blast effect and flame than on the cryogenically fueled Atlas and Saturn. Ejection seats were sufficient to separate the astronauts from a malfunctioning launch vehicle. At higher altitudes, where the ejection seats could not be used, the astronauts would return inside the spacecraft, which would separate from the launch vehicle.[13]

The main proponent of using ejection seats was James Chamberlin, head of the engineering division of NASA's Space Force Task Group. Chamberlin had never liked the Mercury escape tower and wished to use a simpler alternative that would also reduce weight. He reviewed several films of Atlas and Titan II ICBM failures, which he used to estimate the approximate size of a fireball produced by an exploding launch vehicle and from this he gauged that the Titan II would produce a much smaller explosion, thus the spacecraft could get away with ejection seats.

Maxime Faget, the designer of the Mercury LES, was on the other hand less-than-enthusiastic about this setup. Aside from the possibility of the ejection seats seriously injuring the astronauts, they would also only be usable for about 40 seconds after liftoff, by which point the booster would be attaining Mach 1 speed and ejection would no longer be possible. He was also concerned about the astronauts being launched through the Titan's exhaust plume if they ejected in-flight and later added that "The best thing about Gemini was that they never had to make an escape."[14]

Gemini was the first astronaut-carrying spacecraft to include an onboard computer, the Gemini Guidance Computer, to facilitate management and control of mission maneuvers. This computer, sometimes called the Gemini Spacecraft On-Board Computer (OBC), was very similar to the Saturn Launch Vehicle Digital Computer. The Gemini Guidance Computer weighed 58.98 pounds (26.75 kg). Its core memory had 4096 addresses, each containing a 39-bit word composed of three 13-bit "syllables". All numeric data was 26-bit two's-complement integers (sometimes used as fixed-point numbers), either stored in the first two syllables of a word or in the accumulator. Instructions (always with a 4-bit opcode and 9 bits of operand) could go in any syllable.[15][16][17][18]

Unlike Mercury, Gemini used in-flight radar and an artificial horizon, similar to those used in the aviation industry.[15] Astronauts had no control over Mercury's flight path, and computers flew most of Apollo missions. Gemini crew had full manual control with control sticks for yaw, pitch, and roll and forward or backward.[9]

Gemini paraglider during tests at Edwards Air Force Base in August 1964.
Gemini paraglider during tests at Edwards Air Force Base in August 1964.

The original intention for Gemini was to land on solid ground instead of at sea, using a Rogallo wing rather than a parachute, with the crew seated upright controlling the forward motion of the craft. To facilitate this, the airfoil did not attach just to the nose of the craft, but to an additional attachment point for balance near the heat shield. This cord was covered by a strip of metal which ran between the twin hatches.[19] This design was ultimately dropped, and parachutes were used to make a sea landing as in Mercury. The capsule was suspended at an angle closer to horizontal, so that a side of the heat shield contacted the water first. This eliminated the need for the landing bag cushion used in the Mercury capsule.

Adapter module

The adapter module in turn was separated into a Retro module and an Equipment module.

Retro module

The Retro module contained four solid-fuel TE-M-385 Star-13E retrorockets, each spherical in shape except for its rocket nozzle, which were structurally attached to two beams that reached across the diameter of the retro module, crossing at right angles in the center.[20] Re-entry began with the retrorockets firing one at a time. Abort procedures at certain periods during lift-off would cause them to fire at the same time, thrusting the Descent module away from the Titan rocket.

Equipment module

Gemini was equipped with an Orbit Attitude and Maneuvering System (OAMS), containing sixteen thrusters for translation control in all three perpendicular axes (forward/backward, left/right, up/down), in addition to attitude control (pitch, yaw, and roll angle orientation) as in Mercury. Translation control allowed changing orbital inclination and altitude, necessary to perform space rendezvous with other craft, and docking with the Agena Target Vehicle (ATV), with its own rocket engine which could be used to perform greater orbit changes.

Early short-duration missions had their electrical power supplied by batteries; later endurance missions used the first fuel cells in manned spacecraft.

Gemini was in some regards more advanced than Apollo because the latter program began almost a year earlier. It became known as a "pilot's spacecraft" due to its assortment of jet fighter-like features, in no small part due to Gus Grissom's influence over the design, and it was at this point where the American manned space program clearly began showing its superiority over that of the Soviet Union with long duration flight, rendezvous, and extravehicular capability.[Note 4] The Soviet Union during this period was developing the Soyuz spacecraft intended to take cosmonauts to the Moon, but political and technical problems began to get in the way, leading to the ultimate end of their manned lunar program.

Launch vehicle

The Titan II had debuted in 1962 as the Air Force's second-generation ICBM to replace the Atlas. By using hypergolic fuels, it could be stored for long periods of time and be easily readied for launch in addition to being a simpler design with fewer components, the only caveat being that the propellant mix (nitrogen tetroxide and hydrazine) was extremely toxic compared to the Atlas's liquid oxygen/RP-1. However, the Titan had considerable difficulty being man-rated due to early problems with pogo oscillation. The launch vehicle used a radio guidance system that was unique to launches from Cape Kennedy.


Astronauts White and McDivitt inside the Gemini 4 spacecraft, 1965
Astronauts White and McDivitt inside the Gemini 4 spacecraft, 1965
Gemini 8 prime crew and other astronauts at prelaunch breakfast, 1966
Gemini 8 prime crew and other astronauts at prelaunch breakfast, 1966

Deke Slayton, as director of flight crew operations, had primary responsibility for assigning crews for the Gemini program. Each flight had a primary crew and backup crew, and the backup crew would rotate to primary crew status three flights later. Slayton intended for first choice of mission commands to be given to the four remaining active astronauts of the Mercury Seven: Alan Shepard, Grissom, Cooper, and Schirra. (John Glenn had retired from NASA in January 1964 and Scott Carpenter, who was blamed by some in NASA management for the problematic reentry of Aurora 7, was on leave to participate in the Navy's SEALAB project and was grounded from flight in July 1964 due to an arm injury sustained in a motorbike accident. Slayton himself continued to be grounded due to a heart problem.)

Titles used for the left-hand (command) and right-hand seat crew positions were taken from the U.S. Air Force pilot ratings, Command Pilot and Pilot. Sixteen astronauts flew on 10 manned Gemini missions:

Yuri Gagarin shakes hand with Gemini 4 astronauts, 1965
Yuri Gagarin shakes hand with Gemini 4 astronauts, 1965
Group Astronaut Service Mission, crew position
Astronaut Group 1
(Project Mercury veterans)
Gordon Cooper USAF Gemini 5 Command Pilot
Virgil "Gus" Grissom Gemini 3 Command Pilot
Walter M. Schirra USN Gemini 6A Command Pilot
Astronaut Group 2 Neil Armstrong Civilian[Note 5] Gemini 8 Command Pilot
Frank Borman USAF Gemini 7 Command Pilot
Charles "Pete" Conrad USN Gemini 5 Pilot
Gemini 11 Command Pilot
Jim Lovell USN Gemini 7 Pilot
Gemini 12 Command Pilot
James McDivitt USAF Gemini 4 Command Pilot
Thomas P. Stafford Gemini 6A Pilot
Gemini 9 Command Pilot
Ed White Gemini 4 Pilot
John Young USN Gemini 3 Pilot
Gemini 10 Command Pilot
Astronaut Group 3 Edwin "Buzz" Aldrin USAF Gemini 12 Pilot
Eugene Cernan USN Gemini 9 Pilot
Michael Collins USAF Gemini 10 Pilot
Richard F. Gordon USN Gemini 11 Pilot
David Scott USAF Gemini 8 Pilot

Crew selection

In late 1963, Slayton selected Shepard and Stafford for Gemini 3, McDivitt and White for Gemini 4, and Schirra and Young for Gemini 5 (which was to be the first Agena rendezvous mission). The backup crew for Gemini 3 was Grissom and Borman, who were also slated for Gemini 6, to be the first long-duration mission. Finally Conrad and Lovell were assigned as the backup crew for Gemini 4.

Delays in the production of the Agena Target Vehicle caused the first rearrangement of the crew rotation. The Schirra and Young mission was bumped to Gemini 6 and they became the backup crew for Shepard and Stafford. Grissom and Borman then had their long-duration mission assigned to Gemini 5.

The second rearrangement occurred when Shepard developed Ménière's disease, an inner ear problem. Grissom was then moved to command Gemini 3. Slayton felt that Young was a better personality match with Grissom and switched Stafford and Young. Finally, Slayton tapped Cooper to command the long-duration Gemini 5. Again for reasons of compatibility, he moved Conrad from backup commander of Gemini 4 to pilot of Gemini 5, and Borman to backup command of Gemini 4. Finally he assigned Armstrong and Elliot See to be the backup crew for Gemini 5. The third rearrangement of crew assignment occurred when Slayton felt that See wasn't up to the physical demands of EVA on Gemini 8. He reassigned See to be the prime commander of Gemini 9 and put Scott as pilot of Gemini 8 and Charles Bassett as the pilot of Gemini 9.

The fourth and final rearrangement of the Gemini crew assignment occurred after the deaths of See and Bassett when their trainer jet crashed, coincidentally into a McDonnell building which held their Gemini 9 capsule in St. Louis. The backup crew of Stafford and Cernan was then moved up to the new prime crew of the re-designated Gemini 9A. Lovell and Aldrin were moved from being the backup crew of Gemini 10 to be the backup crew of Gemini 9. This cleared the way through the crew rotation for Lovell and Aldrin to become the prime crew of Gemini 12.

Along with the deaths of Grissom, White, and Roger Chaffee in the fire of Apollo 1, this final arrangement helped determine the makeup of the first seven Apollo crews, and who would be in position for a chance to be the first to walk on the Moon.


Gemini Mission Control in Houston during Gemini 5
Gemini Mission Control in Houston during Gemini 5

In 1964 and 1965 two Gemini missions were flown without crews to test out systems and the heat shield. These were followed by ten flights with crews in 1965 and 1966. All were launched by Titan II launch vehicles. Some highlights from the Gemini program:

  • On Gemini 4, Ed White became the first American to make an extravehicular activity (EVA, or "space walk") on June 3, 1965.
  • Gemini 5 (August 21-29, 1965) demonstrated the 8-day endurance necessary for an Apollo lunar mission with the first use of fuel cells to generate its electrical power.
  • Gemini 6A and 7 accomplished the first space rendezvous in December 1965, and Gemini 7 set a 14-day endurance record.
  • Gemini 8 achieved the first space docking with an unmanned Agena Target Vehicle.
  • Gemini 10 established that radiation at high altitude was not a problem, further demonstrated the ability to rendezvous with a passive object, and would also be the first Gemini mission to fire the Agena's own rocket. Mike Collins would be the first person to meet another spacecraft in orbit, during his second successful EVA.
  • Gemini 11 set a manned Earth orbital altitude record of 739.2 nautical miles (1,369.0 km) in September 1966, using the Agena target vehicle's propulsion system. This record still stands as of 2017.[21]
  • On Gemini 12 Edwin "Buzz" Aldrin became the first space traveller to prove that useful work could be done outside a spacecraft without life-threatening exhaustion, due to newly implemented footholds, handholds and scheduled rest periods.

Rendezvous in orbit is not a straightforward maneuver. Should a spacecraft increase its speed to catch up with another, the result is that it goes into a higher and slower orbit and the distance thereby increases. The right procedure is to go to a lower orbit first and which increases relative speed, and then approach the target spacecraft from below and decrease orbital speed to meet it.[22] To practice these maneuvers special rendezvous and docking simulators were built for the astronauts.[23]

Mission LV serial No Command Pilot Pilot Mission dates Launch time Duration
Gemini 1 GLV-1 12556 8–12 April 1964 16:00 UTC 03d 23h1
First test flight of Gemini; spacecraft was intentionally destroyed during re-entry
1: The mission duration was 4h 50m, sufficient to achieve all of the mission aims in three orbits; the spacecraft remained in orbit for 3d 23h.
Gemini 2 GLV-2 12557 19 January 1965 14:04 UTC 00d 00h 18m 16s
Suborbital flight to test heat shield
Gemini 3
GLV-3 12558 Grissom Young 23 March 1965 14:24 UTC 00d 04h 52m 31s
First manned Gemini flight, three orbits.
Gemini IV
Gemini Four patch.jpg
GLV-4 12559 McDivitt White 3–7 June 1965 15:16 UTC 04d 01h 56m 12s
Included first extravehicular activity (EVA) by an American; White's "space walk" was a 22-minute EVA exercise.
Gemini V
GLV-5 12560 Cooper Conrad 21–29 August 1965 14:00 UTC 07d 22h 55m 14s
First week-long flight; first use of fuel cells for electrical power; evaluated guidance and navigation system for future rendezvous missions. Completed 120 orbits.
Gemini VII
Gemini VII patch.png
GLV-7 12562 Borman Lovell 4–18 December 1965 19:30 UTC 13d 18h 35m 01s
When the original Gemini VI mission was scrubbed because the launch of the Agena docking target failed, Gemini VII was used as the rendezvous target instead. Primary objective was to determine whether humans could live in space for 14 days.
Gemini VI-A
Gemini 6A patch.png
GLV-6 12561 Schirra Stafford 15–16 December 1965 13:37 UTC 01d 01h 51m 24s
First space rendezvous accomplished with Gemini VII, station-keeping for over five hours at distances from 1 to 300 feet (0.30 to 91 m).
Gemini VIII
Ge08Patch orig.png
GLV-8 12563 Armstrong Scott 16–17 March 1966 16:41 UTC 00d 10h 41m 26s
Accomplished first docking with another space vehicle, an unmanned Agena Target Vehicle. While docked, a Gemini spacecraft thruster malfunction caused near-fatal tumbling of the craft, which, after undocking, Armstrong was able to overcome; the crew effected the first emergency landing of a manned U.S. space mission.
Gemini IX-A
Ge09Patch orig.png
GLV-9 12564 Stafford Cernan 3–6 June 1966 13:39 UTC 03d 00h 20m 50s
Rescheduled from May to rendezvous and dock with the Augmented Target Docking Adapter (ATDA) after the original Agena Target Vehicle launch failed. The ATDA shroud did not completely separate, making docking impossible. Three different types of rendezvous, two hours of EVA, and 44 orbits were completed.
Gemini X
Ge10Patch orig.png
GLV-10 12565 Young Collins 18–21 July 1966 22:20 UTC 02d 22h 46m 39s
First use of the Agena Target Vehicle's propulsion systems. The spacecraft also rendezvoused with the Agena Target Vehicle from Gemini VIII. Collins had 49 minutes of EVA standing in the hatch and 39 minutes of EVA to retrieve experiments from the Agena. 43 orbits completed.
Gemini XI
Gemini 11 patch.png
GLV-11 12566 Conrad Gordon 12–15 September 1966 14:42 UTC 02d 23h 17m 09s
Gemini record altitude with apogee of 739.2 nautical miles (1,369.0 km)[21] reached using the Agena Target Vehicle propulsion system after first orbit rendezvous and docking. Gordon made a 33-minute EVA and two-hour standup EVA. 44 orbits.
Gemini XII
Gemini 12 insignia.png
GLV-12 12567 Lovell Aldrin 11–15 November 1966 20:46 UTC 03d 22h 34m 31s
Final Gemini flight. Rendezvoused and docked manually with the target Agena and kept station with it during EVA. Aldrin set an EVA record of 5 hours and 30 minutes for one space walk and two stand-up exercises, and demonstrated solutions to previous EVA problems. 59 orbits completed

Gemini-Titan launches and serial numbers

Left: All Gemini launches from GT-1 through GT-12. Right: USAF serial number location on Titan II

The Gemini-Titan II launch vehicle was adapted by NASA from the U.S. Air Force Titan II ICBM. (Similarly, the Mercury-Atlas launch vehicle had been adapted from the USAF Atlas missile.) The Gemini-Titan II rockets were assigned Air Force serial numbers, which were painted in four places on each Titan II (on opposite sides on each of the first and second stages). USAF crews maintained Launch Complex 19 and prepared and launched all of the Gemini-Titan II launch vehicles. Data and experience operating the Titans was of value to both the U.S. Air Force and NASA.

The USAF serial numbers assigned to the Gemini-Titan launch vehicles are given in the tables above. Fifteen Titan IIs were ordered in 1962 so the serial is "62-12XXX", but only "12XXX" is painted on the Titan II. The order for the last three of the 15 launch vehicles was canceled on July 30, 1964, and they were never built. Serial numbers were, however, assigned to them prospectively: 12568 - GLV-13; 12569 - GLV-14; and 12570 - GLV-15.

Program cost

From 1962 to 1967, Gemini cost $1.3 billion in 1967 dollars ($7.32 billion in 2016[24]).[1] In January 1969, a NASA report to the US Congress estimating the costs for Mercury, Gemini, and Apollo (through the first manned Moon landing) included $1.2834 billion for Gemini: $797.4 million for spacecraft, $409.8 million for launch vehicles, and $76.2 million for support.[25]

Current location of hardware



Gemini TTV-1 paraglider capsule
Gemini TTV-1 paraglider capsule

Proposed extensions and applications

Advanced Gemini

McDonnell Aircraft, the main contractor for Mercury and Gemini, was also one of the original bidders on the prime contract for Apollo, but lost out to North American Aviation. McDonnell later sought to extend the Gemini program by proposing a derivative which could be used to fly a cislunar mission and even achieve a manned lunar landing earlier and at less cost than Apollo, but these proposals were rejected by NASA.

A range of applications were considered for Advanced Gemini missions, including military flights, space station crew and logistics delivery, and lunar flights. The Lunar proposals ranged from reusing the docking systems developed for the Agena Target Vehicle on more powerful upper stages such as the Centaur, which could propel the spacecraft to the Moon, to complete modifications of the Gemini to enable it to land on the lunar surface. Its applications would have ranged from manned lunar flybys before Apollo was ready, to providing emergency shelters or rescue for stranded Apollo crews, or even replacing the Apollo program.

Some of the Advanced Gemini proposals used "off-the-shelf" Gemini spacecraft, unmodified from the original program, while others featured modifications to allow the spacecraft to carry more crew, dock with space stations, visit the Moon, and perform other mission objectives. Other modifications considered included the addition of wings or a parasail to the spacecraft, in order to enable it to make a horizontal landing.

Big Gemini

Big Gemini (or "Big G") was another proposal by McDonnell Douglas made in August 1969. It was intended to provide large-capacity, all-purpose access to space, including missions that ultimately used Apollo or the Space Shuttle.

The study was performed to generate a preliminary definition of a logistic spacecraft derived from Gemini that would be used to resupply an orbiting space station. Land-landing at a preselected site and refurbishment and reuse were design requirements. Two baseline spacecraft were defined: a nine-man minimum modification version of the Gemini B called Min-Mod Big G and a 12-man advanced concept, having the same exterior geometry but with new, state-of-the-art subsystems, called Advanced Big G.[citation needed] Three launch vehicles-Saturn IB, Titan IIIM, and Saturn INT-20 (S-IC/S-IVB) were investigated for use with the spacecraft.

Military applications

The Air Force had an interest in the Gemini system, and decided to use its own modification of the spacecraft as the crew vehicle for the Manned Orbital Laboratory. To this end, the Gemini 2 spacecraft was refurbished and flown again atop a mockup of the MOL, sent into space by a Titan IIIC. This was the first time a spacecraft went into space twice.

The USAF also had the notion of adapting the Gemini spacecraft for military applications, such as crude observation of the ground (no specialized reconnaissance camera could be carried) and practicing making rendezvous with suspicious satellites. This project was called Blue Gemini. The USAF did not like the fact that Gemini would have to be recovered by the US Navy, so they intended for Blue Gemini eventually to use the airfoil and land on three skids, carried over from the original design of Gemini.

At first some within NASA welcomed sharing of the cost with the USAF, but it was later agreed that NASA was better off operating Gemini by itself. Blue Gemini was canceled in 1963 by Secretary of Defense Robert McNamara, who decided that the NASA Gemini flights could conduct necessary military experiments. MOL was canceled by Secretary of Defense Melvin Laird in 1969, when it was determined that unmanned spy satellites could perform the same functions much more cost-effectively.

In media

See also



  1. ^ The only Gemini spacecraft not launched by a Titan II was the reflight of Gemini 2 for a Manned Orbiting Laboratory test in 1966, which used a Titan IIIC
  2. ^ Gemini 3 used the Mercury Control Center located at Cape Kennedy for flight control, as the new center was still in a test status. Gemini 4 was the first to be guided from Houston, with Mercury Control as a backup. From Gemini 5 through today, all flights are controlled from Houston.
  3. ^ The requirement for a touchdown on land using a paraglider was canceled in 1964.
  4. ^ During the ten manned flights of the Gemini program, the Soviets made no manned flights, and despite achieving the first EVA, did no more EVAs until January 1969.
  5. ^ Armstrong retired from the US Navy in 1960.


 This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration.

  1. ^ a b Lafleur, Claude (2010-03-08). "Costs of US piloted programs". The Space Review. Retrieved February 18, 2012.
  2. ^ a b Schwartz, John (October 17, 2018). "Why Does 'First Man' Say Gemini as 'Geminee'? NASA Explains. Sorta". The New York Times. Retrieved November 6, 2018.
  3. ^ a b c d Gainor (2001), pp. 93, 97–99.
  4. ^ Hacker & Grimwood (1977), pp. XV, 75.
  5. ^ Loff (2013).
  6. ^ a b Murray & Cox (1989), pp. 33–34.
  7. ^ Reguly (1965), p. 7.
  8. ^ Hacker & Grimwood (1977), p. 75.
  9. ^ a b Agle (1998).
  10. ^ Farmer & Hamblin (2004), pp. 51–54.
  11. ^ Gatland (1976), p. 42.
  12. ^ Dryden (1964), p. 362.
  13. ^ Dryden (1965), p. 364.
  14. ^ Glen E. Swanson, ed., "Before This Decade Is Out: Personal Reflections on the Apollo Program," Dover Publications 2012, p. 354.
  15. ^ a b Tomayko (1988), pp. 10–19.
  16. ^ Burkey (2012).
  17. ^ "IBM Archives: IBM and the Gemini Program". 23 January 2003.
  18. ^ C. A. Leist and J. C. Condell, "Gemini Programming Manual", 1966
  19. ^ "Losing Rogallo from Gemini". Vintage Space. Amy Shira Teitel. 2011-05-22. Retrieved 2012-12-23.
  20. ^
  21. ^ a b Dumoulin, Jim (August 25, 2000), NASA Project Gemini-XI, retrieved April 12, 2010
  22. ^ Buzz Aldrin (Fall 2005). "Orbital Rendezvous". Buzz Aldrin's Share Space Foundation. Retrieved 2011-10-09.
  23. ^ "NASA, Project Gemini". NASA. Archived from the original on 2004-11-07. Retrieved 2011-10-14.
  24. ^ Thomas, Ryland; Williamson, Samuel H. (2018). "What Was the U.S. GDP Then?". MeasuringWorth. Retrieved January 5, 2018. United States Gross Domestic Product deflator figures follow the Measuring Worth series.
  25. ^ Wilford, John Noble (July 1969). We Reach the Moon. New York: Bantam Books. p. 67.
  26. ^



External links

This page was last edited on 4 March 2019, at 12:32
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.