To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Principle of faunal succession

From Wikipedia, the free encyclopedia

The principle of faunal succession, also known as the law of faunal succession, is based on the observation that sedimentary rock strata contain fossilized flora and fauna, and that these fossils succeed each other vertically in a specific, reliable order that can be identified over wide horizontal distances. A fossilized Neanderthal bone (less than 500,000 years old) will never be found in the same stratum as a fossilized Megalosaurus (about 160 million years old), for example, because neanderthals and megalosaurs lived during different geological periods, separated by millions of years. This allows for strata to be identified and dated by the fossils found within.

This principle, which received its name from the English geologist William Smith, is of great importance in determining the relative age of rocks and strata.[1] The fossil content of rocks together with the law of superposition helps to determine the time sequence in which sedimentary rocks were laid down.

Evolution explains the observed faunal and floral succession preserved in rocks. Faunal succession was documented by Smith in England during the first decade of the 19th century, and concurrently in France by Cuvier (with the assistance of the mineralogist Alexandre Brongniart). Archaic biological features and organisms are succeeded in the fossil record by more modern versions. For instance, paleontologists investigating the evolution of birds predicted that feathers would first be seen in primitive forms on flightless predecessor organisms such as feathered dinosaurs. This is precisely what has been discovered in the fossil record: simple feathers, incapable of supporting flight, are succeeded by increasingly large and complex feathers.[2]

In practice, the most useful diagnostic species are those with the fastest rate of species turnover and the widest distribution; their study is termed biostratigraphy, the science of dating rocks by using the fossils contained within them. In Cenozoic strata, fossilized tests of foraminifera are often used to determine faunal succession on a refined scale, each biostratigraphic unit (biozone) being a geological stratum that is defined on the basis of its characteristic fossil taxa. An outline microfaunal zonal scheme based on both foraminifera and ostracoda was compiled by M. B. Hart (1972).

Earlier fossil life forms are simpler than more recent forms, and more recent fossil forms are more similar to living forms (principle of faunal succession).[3]

See also

References

  1. ^ Winchester, Simon (2001), The Map that Changed the World: William Smith and the Birth of Modern Geology, New York: HarperCollins, pp. 59–91, ISBN 0-06-093180-9
  2. ^ Yu, Mingke; Wu, Ping; Widelitz, Randall B.; Chuong, Cheng-Ming (21 November 2002), "The morphogenesis of feathers", Nature, 420 (6913): 308–312, Bibcode:2002Natur.420..308Y, doi:10.1038/nature01196, PMC 4386656, PMID 12442169
  3. ^ Evolutionary Analysis, 4th Edition. p 61.
This page was last edited on 22 January 2024, at 16:47
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.