To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Semiperfect number

From Wikipedia, the free encyclopedia

Demonstration, with Cuisenaire rods, of the perfection of the number 6
Demonstration, with Cuisenaire rods, of the perfection of the number 6

In number theory, a semiperfect number or pseudoperfect number is a natural number n that is equal to the sum of all or some of its proper divisors. A semiperfect number that is equal to the sum of all its proper divisors is a perfect number.

The first few semiperfect numbers are

6, 12, 18, 20, 24, 28, 30, 36, 40, ... (sequence A005835 in the OEIS)

Properties

  • Every multiple of a semiperfect number is semiperfect.[1] A semiperfect number that is not divisible by any smaller semiperfect number is primitive.
  • Every number of the form 2mp for a natural number m and an odd prime number p such that p < 2m + 1 is also semiperfect.
    • In particular, every number of the form 2m(2m + 1 − 1) is semiperfect, and indeed perfect if 2m + 1 − 1 is a Mersenne prime.
  • The smallest odd semiperfect number is 945 (see, e.g., Friedman 1993).
  • A semiperfect number is necessarily either perfect or abundant. An abundant number that is not semiperfect is called a weird number.
  • With the exception of 2, all primary pseudoperfect numbers are semiperfect.
  • Every practical number that is not a power of two is semiperfect.
  • The natural density of the set of semiperfect numbers exists.[2]

Primitive semiperfect numbers

A primitive semiperfect number (also called a primitive pseudoperfect number, irreducible semiperfect number or irreducible pseudoperfect number) is a semiperfect number that has no semiperfect proper divisor.[2]

The first few primitive semiperfect numbers are 6, 20, 28, 88, 104, 272, 304, 350, ... (sequence A006036 in the OEIS)

There are infinitely many such numbers. All numbers of the form 2mp, with p a prime between 2m and 2m+1, are primitive semiperfect, but this is not the only form: for example, 770.[1][2] There are infinitely many odd primitive semiperfect numbers, the smallest being 945, a result of Paul Erdős:[2] there are also infinitely many primitive semiperfect numbers that are not harmonic divisor numbers.[1]

See also

Notes

  1. ^ a b c Zachariou+Zachariou (1972)
  2. ^ a b c d Guy (2004) p. 75

References

  • Friedman, Charles N. (1993). "Sums of divisors and Egyptian fractions". Journal of Number Theory. 44 (3): 328–339. doi:10.1006/jnth.1993.1057. MR 1233293. Zbl 0781.11015. Archived from the original on 2012-02-10.
  • Guy, Richard K. (2004). Unsolved Problems in Number Theory. Springer-Verlag. ISBN 0-387-20860-7. OCLC 54611248. Zbl 1058.11001. Section B2.
  • Sierpiński, Wacław (1965). "Sur les nombres pseudoparfaits". Mat. Vesn., N. Ser. 2 (in French). 17: 212–213. MR 0199147. Zbl 0161.04402.
  • Zachariou, Andreas; Zachariou, Eleni (1972). "Perfect, semiperfect and Ore numbers". Bull. Soc. Math. Grèce, n. Ser. 13: 12–22. MR 0360455. Zbl 0266.10012.

External links

This page was last edited on 10 May 2018, at 23:26
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.