To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Primitive recursive set function

From Wikipedia, the free encyclopedia

In mathematics, primitive recursive set functions or primitive recursive ordinal functions are analogs of primitive recursive functions, defined for sets or ordinals rather than natural numbers. They were introduced by Jensen & Karp (1971).

YouTube Encyclopedic

  • 1/3
    Views:
    1 333
    5 474
    641 542
  • Recursively Enumerable - Intro to Theoretical Computer Science
  • Recursion Function To Multiply Two Positive Integers
  • ❖ Composition of Functions ❖

Transcription

Definition

A primitive recursive set function is a function from sets to sets that can be obtained from the following basic functions by repeatedly applying the following rules of substitution and recursion:

The basic functions are:

  • Projection: Pn,m(x1, ..., xn) = xm for 0 ≤ m ≤ n
  • Zero: F(x) = 0
  • Adjoining an element to a set: F(x, y) = x ∪ {y}
  • Testing membership: C(x, y, u, v) = x if u ∈ v, and C(x, y, u, v) = y otherwise.

The rules for generating new functions by substitution are

  • F(x, y) = G(x, H(x), y)
  • F(x, y) = G(H(x), y)

where x and y are finite sequences of variables.

The rule for generating new functions by recursion is

  • F(z, x) = G(∪uzF(u, x), z, x)

A primitive recursive ordinal function is defined in the same way, except that the initial function F(x, y) = x ∪ {y} is replaced by F(x) = x ∪ {x} (the successor of x). The primitive recursive ordinal functions are the same as the primitive recursive set functions that map ordinals to ordinals.

One can also add more initial functions to obtain a larger class of functions. For example, the ordinal function ωα is not primitive recursive, because the constant function with value ω (or any other infinite set) is not primitive recursive, so one might want to add this constant function to the initial functions.

References

  • Jensen, Ronald B.; Karp, Carol (1971), "Primitive recursive set functions", Axiomatic Set Theory, Proc. Sympos. Pure Math., XIII, Part I, Providence, R.I.: Amer. Math. Soc., pp. 143–176, ISBN 9780821802458, MR 0281602
This page was last edited on 14 August 2020, at 19:27
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.