To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Positive set theory

From Wikipedia, the free encyclopedia

In mathematical logic, positive set theory is the name for a class of alternative set theories in which the axiom of comprehension holds for at least the positive formulas (the smallest class of formulas containing atomic membership and equality formulas and closed under conjunction, disjunction, existential and universal quantification).

Typically, the motivation for these theories is topological: the sets are the classes which are closed under a certain topology. The closure conditions for the various constructions allowed in building positive formulas are readily motivated (and one can further justify the use of universal quantifiers bounded in sets to get generalized positive comprehension): the justification of the existential quantifier seems to require that the topology be compact.

YouTube Encyclopedic

  • 1/3
    Views:
    10 676
    17 185
    416 989
  • Alain Badiou. Infinity and Set Theory: How To Begin With The Void. 2011
  • Bertrand Russell, Set Theory and Russell's Paradox - Professor Tony Mann
  • Natural Law Theory: Crash Course Philosophy #34

Transcription

Axioms

The set theory of Olivier Esser consists of the following axioms:[1]

Extensionality

Positive comprehension

where is a positive formula. A positive formula uses only the logical constants but not .

Closure

where is a formula. That is, for every formula , the intersection of all sets which contain every such that exists. This is called the closure of and is written in any of the various ways that topological closures can be presented. This can be put more briefly if class language is allowed (any condition on sets defining a class as in NBG): for any class C there is a set which is the intersection of all sets which contain C as a subclass. This is a reasonable principle if the sets are understood as closed classes in a topology.

Infinity

The von Neumann ordinal exists. This is not an axiom of infinity in the usual sense; if Infinity does not hold, the closure of exists and has itself as its sole additional member (it is certainly infinite); the point of this axiom is that contains no additional elements at all, which boosts the theory from the strength of second order arithmetic to the strength of Morse–Kelley set theory with the proper class ordinal a weakly compact cardinal.

Interesting properties

  • The universal set is a proper set in this theory.
  • The sets of this theory are the collections of sets which are closed under a certain topology on the classes.
  • The theory can interpret ZFC (by restricting oneself to the class of well-founded sets, which is not itself a set). It in fact interprets a stronger theory (Morse–Kelley set theory with the proper class ordinal a weakly compact cardinal).

Researchers

  • Isaac Malitz originally introduced Positive Set Theory in his 1976 PhD Thesis at UCLA
  • Alonzo Church was the chairman of the committee supervising the aforementioned thesis
  • Olivier Esser seems to be the most active in this field.[citation needed]

See also

References

  1. ^ Holmes, M. Randall (21 September 2021). "Alternative Axiomatic Set Theories". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy.
This page was last edited on 28 March 2023, at 15:34
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.