To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Polynomial decomposition

From Wikipedia, the free encyclopedia

In mathematics, a polynomial decomposition expresses a polynomial f as the functional composition of polynomials g and h, where g and h have degree greater than 1; it is an algebraic functional decomposition. Algorithms are known for decomposing univariate polynomials in polynomial time.

Polynomials which are decomposable in this way are composite polynomials; those which are not are indecomposable polynomials or sometimes prime polynomials[1] (not to be confused with irreducible polynomials, which cannot be factored into products of polynomials). The degree of a composite polynomial is always a composite number, the product of the degrees of the composed polynomials.

The rest of this article discusses only univariate polynomials; algorithms also exist for multivariate polynomials of arbitrary degree.[2]

YouTube Encyclopedic

  • 1/5
    Views:
    3 923 549
    13 666
    1 440 766
    2 082 010
    9 085
  • Algebra Basics: What Are Polynomials? - Math Antics
  • 56. Chromatic Polynomial - Decomposition Theorem with example
  • Polynomials - Adding, Subtracting, Multiplying and Dividing Algebraic Expressions
  • How To Factor Polynomials The Easy Way!
  • Linear Algebra 3c1: Decomposition with Polynomials 1

Transcription

Examples

In the simplest case, one of the polynomials is a monomial. For example,

decomposes into

since

using the ring operator symbol  to denote function composition.

Less trivially,

Uniqueness

A polynomial may have distinct decompositions into indecomposable polynomials where where for some . The restriction in the definition to polynomials of degree greater than one excludes the infinitely many decompositions possible with linear polynomials.

Joseph Ritt proved that , and the degrees of the components are the same up to linear transformations, but possibly in different order; this is Ritt's polynomial decomposition theorem.[1][3] For example, .

Applications

A polynomial decomposition may enable more efficient evaluation of a polynomial. For example,

can be calculated with 3 multiplications and 3 additions using the decomposition, while Horner's method would require 7 multiplications and 8 additions.

A polynomial decomposition enables calculation of symbolic roots using radicals, even for some irreducible polynomials. This technique is used in many computer algebra systems.[4] For example, using the decomposition

the roots of this irreducible polynomial can be calculated as[5]

Even in the case of quartic polynomials, where there is an explicit formula for the roots, solving using the decomposition often gives a simpler form. For example, the decomposition

gives the roots[5]

but straightforward application of the quartic formula gives equivalent results but in a form that is difficult to simplify and difficult to understand; one of the four roots is:

Algorithms

The first algorithm for polynomial decomposition was published in 1985,[6] though it had been discovered in 1976,[7] and implemented in the Macsyma/Maxima computer algebra system.[8] That algorithm takes exponential time in worst case, but works independently of the characteristic of the underlying field.

A 1989 algorithm runs in polynomial time but with restrictions on the characteristic.[9]

A 2014 algorithm calculates a decomposition in polynomial time and without restrictions on the characteristic.[10]

Notes

  1. ^ a b J.F. Ritt, "Prime and Composite Polynomials", Transactions of the American Mathematical Society 23:1:51–66 (January, 1922) doi:10.2307/1988911 JSTOR 1988911
  2. ^ Jean-Charles Faugère, Ludovic Perret, "An efficient algorithm for decomposing multivariate polynomials and its applications to cryptography", Journal of Symbolic Computation, 44:1676-1689 (2009), doi:10.1016/j.jsc.2008.02.005
  3. ^ Capi Corrales-Rodrigáñez, "A note on Ritt's theorem on decomposition of polynomials", Journal of Pure and Applied Algebra 68:3:293–296 (6 December 1990) doi:10.1016/0022-4049(90)90086-W
  4. ^ The examples below were calculated using Maxima.
  5. ^ a b Where each ± is taken independently.
  6. ^ David R. Barton, Richard Zippel (1985). "Polynomial Decomposition Algorithms". Journal of Symbolic Computation. 1 (2): 159–168. doi:10.1016/S0747-7171(85)80012-2.
  7. ^ Richard Zippel, Functional Decomposition, 1996.
  8. ^ See the polydecomp function.
  9. ^ Kozen, Dexter; Landau, Susan (1989). "Polynomial Decomposition Algorithms". Journal of Symbolic Computation. 7 (5): 445–456. CiteSeerX 10.1.1.416.6491. doi:10.1016/S0747-7171(89)80027-6.
  10. ^ Raoul Blankertz (2014). "A polynomial time algorithm for computing all minimal decompositions of a polynomial" (PDF). ACM Communications in Computer Algebra. 48 (187): 1. Archived 2015-09-24 at the Wayback Machine

References

  • Joel S. Cohen (2003). "Chapter 5. Polynomial Decomposition". Computer Algebra and Symbolic Computation. ISBN 1-56881-159-4.
This page was last edited on 11 January 2024, at 07:02
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.