To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Polyhedral group

From Wikipedia, the free encyclopedia

Selected point groups in three dimensions

Involutional symmetry
Cs, (*)
[ ] =

Cyclic symmetry
Cnv, (*nn)
[n] =

Dihedral symmetry
Dnh, (*n22)
[n,2] =
Polyhedral group, [n,3], (*n32)

Tetrahedral symmetry
Td, (*332)
[3,3] =

Octahedral symmetry
Oh, (*432)
[4,3] =

Icosahedral symmetry
Ih, (*532)
[5,3] =

In geometry, the polyhedral group is any of the symmetry groups of the Platonic solids.

YouTube Encyclopedic

  • 1/3
    Views:
    535
    1 323
    802
  • Dicyclic group
  • Quaternion group
  • Symmetries and quantum mechanics: orthogonality relations for characters

Transcription

Groups

There are three polyhedral groups:

  • The tetrahedral group of order 12, rotational symmetry group of the regular tetrahedron. It is isomorphic to A4.
    • The conjugacy classes of T are:
      • identity
      • 4 × rotation by 120°, order 3, cw
      • 4 × rotation by 120°, order 3, ccw
      • 3 × rotation by 180°, order 2
  • The octahedral group of order 24, rotational symmetry group of the cube and the regular octahedron. It is isomorphic to S4.
    • The conjugacy classes of O are:
      • identity
      • 6 × rotation by ±90° around vertices, order 4
      • 8 × rotation by ±120° around triangle centers, order 3
      • 3 × rotation by 180° around vertices, order 2
      • 6 × rotation by 180° around midpoints of edges, order 2
  • The icosahedral group of order 60, rotational symmetry group of the regular dodecahedron and the regular icosahedron. It is isomorphic to A5.
    • The conjugacy classes of I are:
      • identity
      • 12 × rotation by ±72°, order 5
      • 12 × rotation by ±144°, order 5
      • 20 × rotation by ±120°, order 3
      • 15 × rotation by 180°, order 2

These symmetries double to 24, 48, 120 respectively for the full reflectional groups. The reflection symmetries have 6, 9, and 15 mirrors respectively. The octahedral symmetry, [4,3] can be seen as the union of 6 tetrahedral symmetry [3,3] mirrors, and 3 mirrors of dihedral symmetry Dih2, [2,2]. Pyritohedral symmetry is another doubling of tetrahedral symmetry.

The conjugacy classes of full tetrahedral symmetry, TdS4, are:

  • identity
  • 8 × rotation by 120°
  • 3 × rotation by 180°
  • 6 × reflection in a plane through two rotation axes
  • 6 × rotoreflection by 90°

The conjugacy classes of pyritohedral symmetry, Th, include those of T, with the two classes of 4 combined, and each with inversion:

  • identity
  • 8 × rotation by 120°
  • 3 × rotation by 180°
  • inversion
  • 8 × rotoreflection by 60°
  • 3 × reflection in a plane

The conjugacy classes of the full octahedral group, OhS4 × C2, are:

  • inversion
  • 6 × rotoreflection by 90°
  • 8 × rotoreflection by 60°
  • 3 × reflection in a plane perpendicular to a 4-fold axis
  • 6 × reflection in a plane perpendicular to a 2-fold axis

The conjugacy classes of full icosahedral symmetry, IhA5 × C2, include also each with inversion:

  • inversion
  • 12 × rotoreflection by 108°, order 10
  • 12 × rotoreflection by 36°, order 10
  • 20 × rotoreflection by 60°, order 6
  • 15 × reflection, order 2

Chiral polyhedral groups

Chiral polyhedral groups
Name
(Orb.)
Coxeter
notation
Order Abstract
structure
Rotation
points
#valence
Diagrams
Orthogonal Stereographic
T
(332)

[3,3]+
12 A4 43

32
Th
(3*2)


[4,3+]
24 A4 × C2 43

3*2
O
(432)

[4,3]+
24 S4 34

43

62
I
(532)

[5,3]+
60 A5 65

103

152

Full polyhedral groups

Full polyhedral groups
Weyl
Schoe.
(Orb.)
Coxeter
notation
Order Abstract
structure
Coxeter
number

(h)
Mirrors
(m)
Mirror diagrams
Orthogonal Stereographic
A3
Td
(*332)


[3,3]
24 S4 4 6
B3
Oh
(*432)


[4,3]
48 S4 × C2 8 3
>6
H3
Ih
(*532)


[5,3]
120 A5 × C2 10 15

See also

References

External links

  • Weisstein, Eric W. "PolyhedralGroup". MathWorld.
This page was last edited on 9 March 2024, at 10:14
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.