To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

The north polar circle on a polar projection.
The polar circle as lines on a modified cylindrical projection.
The Arctic circle in Finland, 1975.
The Arctic circle in Norway at Saltfjellet mountain plateau in July 2003.

A polar circle is a geographic term for a conditional circular line (arc) referring either to the Arctic Circle or the Antarctic Circle. These are two of the keynote circles of latitude (parallels). On Earth, the Arctic Circle is currently drifting northwards at a speed of about 14.5 m per year and is now at a mean latitude (i.e. without taking into account the astronomical nutation) of 66°33′49.9″ N; the Antarctic Circle is currently drifting southwards at a speed of about 14.5 m per year and is now at a mean latitude of 66°33′49.9″ S.[1] Polar circles are often equated with polar regions of Earth. Due to their inherent climate environment, the bulk of the Arctic Circle, much of which is sea, is sparsely settled whereas this applies to all of Antarctica which is mainly land and sheltered ice shelves.

If Earth had no atmosphere then both polar circles (arcs) would see at least a day a year when the center of the Sun is continuously above the horizon and at least a day a year when it is always below the horizon – a polar day and a polar night as is the case for longer, within the circles. Up to and including the associated poles (North and South), known geographically as the frigid zones such duration extends up to half of the year, namely, close to the poles. Instead, atmospheric refraction and the Sun's light reaching the planet as an extended object rather than a point source means that just within each circle the Earth's surface does not experience any proper polar night, 24 hours where the sun does not rise. By these same two factors, just outward of each circle still experiences a polar day (a day in which the sun does not fully set).

The latitude of the polar circles is + or −90 degrees (which refers to the North and South Pole, respectively) minus the axial tilt (that is, of the Earth's axis of daily rotation relative to the ecliptic, the plane of the Earth's orbit). This predominant, average tilt of the Earth varies slightly, a phenomenon described as nutation. Therefore, the latitudes noted above are calculated by averaging values of tilt observed over many years. The axial tilt also exhibits long-term variations as described in the reference article (a difference of 1 second of arc (″) in the tilt is equivalent to a change of about 31 metres north or south in the positions of the polar circles on the Earth's surface).

YouTube Encyclopedic

  • 1/5
    Views:
    2 738 790
    4 474 226
    126 767
    43 126
    3 549 777
  • Seasons
  • The Arctic vs. the Antarctic - Camille Seaman
  • How the Movement of the Earth and Sun Cause the Days, Seasons and Years
  • Why Aliens Would Hide in the Polar Regions of Earth | Unveiled
  • An Astronomer Responds To Flat Earth Theory

Transcription

Correspondence to polar night and day

Relationship between Earth's axial tilt (ε) to the tropical and polar circles

The polar circles would almost precisely match the boundaries for the zones where the polar night and the polar day would occur throughout the winter solstice and summer solstice day respectively. They do so loosely due to two effects. The first one is atmospheric refraction, in which the Earth's atmosphere bends light rays near the horizon. The second effect is caused by the angular diameter of the Sun as seen from the Earth's orbital distance (which varies very slightly during each orbit). These factors mean the ground-observed boundaries are 80 to 100 kilometres (50 to 62 mi) away from the circle.[citation needed] A further global factor for this numerical range is Earth's nutation, which is a very small change in tilt. Observers higher above sea level can see a tiny amount of the Sun's disc (see horizon) where at lower places it would not rise. For the Arctic circle, being 80–100 km north of the circle in winter, and 80–100 km south of the circle in summer; the inverse directions apply to the other circle.[2]

See also

Notes

  1. ^ Obliquity of the ecliptic Archived 2017-06-12 at the Wayback Machine
  2. ^ Swedish Astronomic calendar 2003 (or any other year) at the times of the winter and summer solstices, around 22 June and 22 December
This page was last edited on 22 January 2024, at 20:07
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.