To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Poincaré–Hopf theorem

From Wikipedia, the free encyclopedia

In mathematics, the Poincaré–Hopf theorem (also known as the Poincaré–Hopf index formula, Poincaré–Hopf index theorem, or Hopf index theorem) is an important theorem that is used in differential topology. It is named after Henri Poincaré and Heinz Hopf.

The Poincaré–Hopf theorem is often illustrated by the special case of the hairy ball theorem, which simply states that there is no smooth vector field on an even-dimensional n-sphere having no sources or sinks.

According to the Poincare-Hopf theorem, closed trajectories can encircle two centres and one saddle or one centre, but never just the saddle. (Here for in case of a Hamiltonian system)

YouTube Encyclopedic

  • 1/3
    Views:
    2 240
    664
    2 362
  • The Poincaré-Hopf Theorem
  • Hairy Ball Theorem and Poincaré-Hopf Theorem in Action!
  • Index Theory for Dynamical Systems, Part 2: Poincaré-Hopf Index Theorem | You Can't Comb a Coconut

Transcription

Formal statement

Let be a differentiable manifold, of dimension , and a vector field on . Suppose that is an isolated zero of , and fix some local coordinates near . Pick a closed ball centered at , so that is the only zero of in . Then the index of at , , can be defined as the degree of the map from the boundary of to the -sphere given by .

Theorem. Let be a compact differentiable manifold. Let be a vector field on with isolated zeroes. If has boundary, then we insist that be pointing in the outward normal direction along the boundary. Then we have the formula

where the sum of the indices is over all the isolated zeroes of and is the Euler characteristic of . A particularly useful corollary is when there is a non-vanishing vector field implying Euler characteristic 0.

The theorem was proven for two dimensions by Henri Poincaré[1] and later generalized to higher dimensions by Heinz Hopf.[2]

Significance

The Euler characteristic of a closed surface is a purely topological concept, whereas the index of a vector field is purely analytic. Thus, this theorem establishes a deep link between two seemingly unrelated areas of mathematics. It is perhaps as interesting that the proof of this theorem relies heavily on integration, and, in particular, Stokes' theorem, which states that the integral of the exterior derivative of a differential form is equal to the integral of that form over the boundary. In the special case of a manifold without boundary, this amounts to saying that the integral is 0. But by examining vector fields in a sufficiently small neighborhood of a source or sink, we see that sources and sinks contribute integer amounts (known as the index) to the total, and they must all sum to 0. This result may be considered[by whom?] one of the earliest of a whole series of theorems (e.g. Atiyah–Singer index theorem, De Rham's theorem, Grothendieck–Riemann–Roch theorem) establishing deep relationships between geometric and analytical or physical concepts. They play an important role in the modern study of both fields.

Sketch of proof

  1. Embed M in some high-dimensional Euclidean space. (Use the Whitney embedding theorem.)
  2. Take a small neighborhood of M in that Euclidean space, Nε. Extend the vector field to this neighborhood so that it still has the same zeroes and the zeroes have the same indices. In addition, make sure that the extended vector field at the boundary of Nε is directed outwards.
  3. The sum of indices of the zeroes of the old (and new) vector field is equal to the degree of the Gauss map from the boundary of Nε to the (n–1)-dimensional sphere. Thus, the sum of the indices is independent of the actual vector field, and depends only on the manifold M.
    Technique: cut away all zeroes of the vector field with small neighborhoods. Then use the fact that the degree of a map from the boundary of an n-dimensional manifold to an (n–1)-dimensional sphere, that can be extended to the whole n-dimensional manifold, is zero.[citation needed]
  4. Finally, identify this sum of indices as the Euler characteristic of M. To do that, construct a very specific vector field on M using a triangulation of M for which it is clear that the sum of indices is equal to the Euler characteristic.

Generalization

It is still possible to define the index for a vector field with nonisolated zeroes. A construction of this index and the extension of Poincaré–Hopf theorem for vector fields with nonisolated zeroes is outlined in Section 1.1.2 of (Brasselet, Seade & Suwa 2009).

See also

References

  1. ^ Henri Poincaré, On curves defined by differential equations (1881–1882)
  2. ^ H. Hopf, Vektorfelder in n-dimensionalen Mannigfaltigkeiten, Math. Ann. 96 (1926), pp. 209–221.
  • "Poincaré–Hopf theorem", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Brasselet, Jean-Paul; Seade, José; Suwa, Tatsuo (2009). Vector fields on singular varieties. Heidelberg: Springer. ISBN 978-3-642-05205-7.
This page was last edited on 31 January 2024, at 12:53
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.