To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Plücker's conoid

From Wikipedia, the free encyclopedia

Figure 1. Plücker's conoid with n = 2.
Figure 2. Plücker's conoid with n = 3.
Figure 3. Plücker's conoid with n = 4.

In geometry, Plücker's conoid is a ruled surface named after the German mathematician Julius Plücker. It is also called a conical wedge or cylindroid; however, the latter name is ambiguous, as "cylindroid" may also refer to an elliptic cylinder.

Plücker's conoid is the surface defined by the function of two variables:

This function has an essential singularity at the origin.

By using cylindrical coordinates in space, we can write the above function into parametric equations

Thus Plücker's conoid is a right conoid, which can be obtained by rotating a horizontal line about the z-axis with the oscillatory motion (with period 2π) along the segment [–1, 1] of the axis (Figure 4).

A generalization of Plücker's conoid is given by the parametric equations

where n denotes the number of folds in the surface. The difference is that the period of the oscillatory motion along the z-axis is /n. (Figure 5 for n = 3)

Figure 4. Plücker's conoid with n = 2.
Figure 5. Plücker's conoid with n = 3

YouTube Encyclopedic

  • 1/1
    Views:
    4 360
  • Find the Equation of the Tangent Plane to a Surface - f(x,y)=-2x^2+4y^2-4y

Transcription

See also

References

  • A. Gray, E. Abbena, S. Salamon, Modern differential geometry of curves and surfaces with Mathematica, 3rd ed. Boca Raton, Florida:CRC Press, 2006. [1] (ISBN 978-1-58488-448-4)
  • Vladimir Y. Rovenskii, Geometry of curves and surfaces with MAPLE [2] (ISBN 978-0-8176-4074-3)

External links


This page was last edited on 14 September 2022, at 12:10
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.