To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Piston (optics)

From Wikipedia, the free encyclopedia

In optics, piston is the mean value of a wavefront or phase profile across the pupil of an optical system. The piston coefficient is typically expressed in wavelengths of light at a particular wavelength. Its main use is in curve-fitting wavefronts with Cartesian polynomials or Zernike polynomials.

However, similar to a real engine piston moving up and down in its cylinder, optical piston values can be changed to bias the wavefront phase mean value as desired. As phase values can only vary from zero to 2π, then repeat in either direction (termed phase wrapping), changing the piston coefficient changes the zero phase value contour locations across the wavefront. This property is critical to the operation of phase-measuring interferometers, which give not only the magnitude but also the sign (convexity or concavity) of a wavefront under test. Piston is physically created in the interferometer by piezoelectric actuators that translate the Fizeau interferometer reference surface along the optical axis by precise fractions of the test wavelength, usually by one quarter of a wavelength. This changes the interferometric fringe patterns and allows direct calculation of the exact wavefront error.

Piston and tilt are not actually true optical aberrations, as they do not represent or model curvature in the wavefront. Defocus is the lowest order true optical aberration. If piston and tilt are subtracted from an otherwise perfect wavefront, a perfect, aberration-free image is formed.

References

  • Malacara, D., Optical Shop Testing - Second Edition, John Wiley and Sons, 1992, ISBN 978-0-471-52232-4.
This page was last edited on 4 June 2023, at 20:33
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.