To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Chemical structure of phytochelatin. n = 2–11.

Phytochelatins are oligomers of glutathione, produced by the enzyme phytochelatin synthase. They are found in plants, fungi, nematodes and all groups of algae including cyanobacteria. Phytochelatins act as chelators, and are important for heavy metal detoxification.[1][2][3] They are abbreviated PC2 through PC11.

A mutant Arabidopsis thaliana lacking phytochelatin synthase is very sensitive to cadmium, but it grows just as well as the wild-type plant at normal concentrations of zinc and copper, two essential metal ions, indicating that phytochelatin is only involved in resistance to metal poisoning.[4]

Because phytochelatin synthase uses glutathione with a blocked thiol group in the synthesis of phytochelatin, the presence of heavy metal ions that bind to glutathione causes the enzyme to work faster. Therefore, the amount of phytochelatin increases when the cell needs more phytochelatin to survive in an environment with high concentrations of metal ions.[5]

Phytochelatin binds to Pb ions leading to sequestration of Pb ions in plants and thus serves as an important component of the detoxification mechanism in plants.[6] Phytochelatin seems to be transported into the vacuole of plants, so that the metal ions it carries are stored safely away from the proteins of the cytosol.[4]

Related peptides

There are groups of other peptides with a similar structure to phytochelatin, but where the last amino acid is not glycine:[4][7]

Phytochelatin-like peptides
Type Structure Has been found in Precursor
Phytochelatin (γGlu-Cys)n-Gly many organisms Glutathione
Homophytochelatin (γGlu-Cys)n-Ala legumes Homoglutathione
Desglycine phytochelatin (γGlu-Cys)n maize, yeasts
Hydroxymethyl-phytochelatin (γGlu-Cys)n-Ser grasses Hydroxymethylglutathione
iso-Phytochelatin (Glu) (γGlu-Cys)n-Glu maize Glutamylcysteinylglutamate
iso-Phytochelatin (Gln) (γGlu-Cys)n-Gln horseradish

History

Phytochelatin was first discovered in 1981 in fission yeast,[8][9] and was named cadystin.[10] It was then found in higher plants in 1985 and was named phytochelatin. In 1989 the biosynthetic enzyme, phytochelatin synthase, was discovered.[7]

See also

  • Farkas, Etelka; Buglyó, Péter (2017). "Chapter 8. Lead(II) Complexes of Amino Acids, Peptides, and Other Related Ligands of Biological Interest". In Astrid, S.; Helmut, S.; Sigel, R. K. O. (eds.). Lead: Its Effects on Environment and Health. Metal Ions in Life Sciences. Vol. 17. de Gruyter. pp. 201–240. doi:10.1515/9783110434330-008. PMID 28731301. pp. 228–230
  • Dunaliella

References

  1. ^ Suk-Bong Ha; Aaron P. Smith; Ross Howden; Wendy M. Dietrich; Sarah Bugg; Matthew J. O'Connell; Peter B. Goldsbrough & Christopher S. Cobbett (1999). "Phytochelatin Synthase Genes from Arabidopsis and the Yeast Schizosaccharomyces pombe". Plant Cell. 11 (6): 1153–1164. doi:10.1105/tpc.11.6.1153. PMC 144235. PMID 10368185. Retrieved 2014-01-13.
  2. ^ Olena K. Vatamaniuk; Elizabeth A. Bucher; James T. Ward; Philip A. Rea (2001). "A new pathway for heavy metal detoxification in animals: phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans". J. Biol. Chem. 276 (24): 20817–20. doi:10.1074/jbc.C100152200. PMID 11313333.
  3. ^ InterPro database page on phytochelatin synthase[permanent dead link]
  4. ^ a b c Buchanan; Gruissem; Jones (2000). Biochemistry & molecular biology of plants (1st ed.). American Society of Plant Physiology.
  5. ^ O. K. Vatamaniuk; S. Mari; Y. Lu & P. A. Rea (2000). "Mechanism of Heavy Metal Ion Activation of Phytochelatin (PC) Synthase". J. Biol. Chem. 275 (40): 31451–31459. doi:10.1074/jbc.M002997200. PMID 10807919.
  6. ^ Dharmendra K. Gupta; Huanggang Huang; Francisco J Corpas (2013). "Lead tolerance in plants: Strategies for Phytoremediation". Environmental Science and Pollution Research International. 20: 1–2. doi:10.1007/s11356-013-1485-4. PMID 23338995.
  7. ^ a b Masahiro Inouhe (2005). "Phytochelatins". Brazilian Journal of Plant Physiology. 17: 65–78. doi:10.1590/S1677-04202005000100006.
  8. ^ Murasugi, Akira; Wada, Chiaki; Hayashi, Yukimasa (1981). "Cadmium-Binding Peptide Induced in Fission Yeast, Schizosaccharomyces pombe". J. Biochem. 90 (5): 1561–1564. doi:10.1093/oxfordjournals.jbchem.a133627. PMID 7338524.
  9. ^ Murasugi, Akira; Wada, Chiaki; Hayashi, Yukimasa (1981). "Purification and Unique Properties in UV and CD Spectra of Cd-Binding Peptide 1 from Schizosaccharomyces pombe"". Biochem. Biophys. Res. Commun. 103 (3): 1021–1028. doi:10.1016/0006-291X(81)90911-6. PMID 7332570.
  10. ^ Kondo, Naoto; Imai, Kunio; Isobe, Minoru; Goto, Toshio; Murasugi, Akira; Wada-Nakagawa, Chiaki; Hayashi, Yukimasa (1984). "Cadystin A and B, Major Unit Peptides Comprising Cadmium Binding Peptides Induced in a Fission Yeast----Separation, Revision of Structures and Synthesis". Tetrahedron Lett. 25 (35): 3869–3872. doi:10.1016/S0040-4039(01)91190-6.

External links

This page was last edited on 5 April 2024, at 04:18
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.