To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Photosynthesis system

From Wikipedia, the free encyclopedia

LI-6800 Portable Photosynthesis System analysing photosynthesis in a maize leaf
A photosynthesis system analysing the photosynthetic rate of a maize leaf

Photosynthesis systems are electronic scientific instruments designed for non-destructive measurement of photosynthetic rates in the field. Photosynthesis systems are commonly used in agronomic and environmental research, as well as studies of the global carbon cycle.

YouTube Encyclopedic

  • 1/5
    Views:
    6 949 236
    819
    3 071
    110 864
    54 125
  • Photosynthesis: Crash Course Biology #8
  • Photosynthesis Analysis with the CI-340 [WEBINAR]
  • Handheld Photosynthesis System - CI-340 by CID Bio-Science, Inc.
  • Artificial Photosynthesis System as efficient as plants and can reduce CO2 levels #DigInfo
  • How We Measure Photosynthesis

Transcription

Photosynthesis! It is not some kind of abstract scientific thing. You would be dead without plants and their magical- nay, SCIENTIFIC ability to convert sunlight, carbon dioxide and water into glucose and pure, delicious oxygen. This happens exclusively through photosynthesis, a process that was developed 450 million years ago and actually rather sucks. It's complicated, inefficient and confusing. But you are committed to having a better, deeper understanding of our world! Or, more probably, you'd like to do well on your test...so let's delve. There are two sorts of reactions in Photosynthesis...light dependent reactions, and light independent reactions, and you've probably already figured out the difference between those two, so that's nice. The light independent reactions are called the "calvin cycle" no...no...no...no...YES! THAT Calvin Cycle. Photosynthesis is basically respiration in reverse, and we've already covered respiration, so maybe you should just go watch that video backwards. Or you can keep watching this one. Either way. I've already talked about what photosynthesis needs in order to work: water, carbon dioxide and sunlight. So, how do they get those things? First, water. Let's assume that we're talking about a vascular plant here, that's the kind of plant that has pipe-like tissues that conduct water, minerals and other materials to different parts of the plant. These are like trees and grasses and flowering plants. In this case the roots of the plants absorb water and bring it to the leaves through tissues called xylem. Carbon dioxide gets in and oxygen gets out through tiny pores in the leaves called stomata. It's actually surprisingly important that plants keep oxygen levels low inside of their leaves for reasons that we will get into later. And finally, individual photons from the Sun are absorbed in the plant by a pigment called chlorophyll. Alright, you remember plant cells? If not, you can go watch the video where we spend the whole time talking about plant cells. One thing that plant cells have that animal cells don't... plastids. And what is the most important plastid? The chloroplast! Which is not, as it is sometimes portrayed, just a big fat sac of chlorophyl. It's got complicated internal structure. Now, the chlorophyll is stashed in membranous sacs called thylakoids. The thykaloids are stacked into grana. Inside of the thykaloid is the lumen, and outside the thykaloid (but still inside the chloroplast) is the stroma. The thylakoid membranes are phospholipid bilayers, which, if you remember means they're really good at maintaining concentration gradients of ions, proteins and other things. This means keeping the concentration higher on one side than the other of the membrane. You're going to need to know all of these things, I'm sorry. Now that we've taken that little tour of the Chloroplast, it's time to get down to the actual chemistry. First thing that happens: A photon created by the fusion reactions of our sun is about to end its 93 million mile journey by slapping into a molecule of cholorophyll. This kicks off stage one, the light-dependent reactions proving that, yes, nearly all life on our planet is fusion-powered. When Chlorophyll gets hit by that photon, an electron absorbs that energy and gets excited. This is the technical term for electrons gaining energy and not having anywhere to put it and when it's done by a photon it's called photoexcitation, but let's just imagine, for the moment anyway, that every photon is whatever dreamy young man 12 year old girls are currently obsessed with, and electrons are 12 year old girls. The trick now, and the entire trick of photosynthesis, is to convert the energy of those 12 year old- I mean, electrons, into something that the plant can use. We are literally going to be spending the entire rest of the video talking about that. I hope that that's ok with you. This first Chlorophyll is not on its own here, it's part of an insanely complicated complex of proteins, lipids, and other molecules called Photosystem II that contains at least 99 different chemicals including over 30 individual chlorophyll molecules. This is the first of four protein complexes that plants need for the light dependent reactions. And if you think it's complicated that we call the first complex photosystem II instead of Photosystem I, then you're welcome to call it by its full name, plastoquinone oxidoreductase. Oh, no? You don't want to call it that? Right then, photosystem II, or, if you want to be brief, PSII. PSII and indeed all of the protein complexes in the light-dependent reactions, straddle the membrane of the thylakoids in the chloroplasts. That excited electron is now going to go on a journey designed to extract all of its new energy and convert that energy into useful stuff. This is called the electron transport chain, in which energized electrons lose their energy in a series of reactions that capture the energy necessary to keep life living. PSII's Chlorophyll now has this electron that is so excited that, when a special protein designed specifically for stealing electrons shows up, the electron actually leaps off of the chlorophyll molecule onto the protein, which we call a mobile electron carrier because it's... ...a mobile electron carrier. The Chlorophyll then freaks out like a mother who has just had her 12 year old daughter abducted by a teen idol and is like "WHAT DO I DO TO FIX THIS PROBLEM!" and then it, in cooperation with the rest of PSII does something so amazing and important that I can barely believe that it keeps happening every day. It splits that ultra-stable molecule, H2O, stealing one of its electrons, to replenish the one it lost. The byproducts of this water splitting? Hydrogen ions, which are just single protons, and oxygen. Sweet, sweet oxygen. This reaction, my friends, is the reason that we can breathe. Brief interjection: Next time someone says that they don't like it when there are chemicals in their food, please remind them that all life is made of chemicals and would they please stop pretending that the word chemical is somehow a synonym for carcinogen! Because, I mean, think about how chlorophyll feels when you say that! It spends all of it's time and energy creating the air we breathe and then we're like "EW! CHEMICALS ARE SO GROSS!" Now, remember, all energized electrons from PSII have been picked up by electron carriers and are now being transported onto our second protein complex the Cytochrome Complex! This little guy does two things...one, it serves as an intermediary between PSII and PS I and, two, uses a bit of the energy from the electron to pump another proton into the thylakoid. So the thylakoid's starting to fill up with protons. We've created some by splitting water, and we moved one in using the Cytochrome complex. But why are we doing this? Well...basically, what we're doing, is charging the Thylakoid like a battery. By pumping the thylakoid full of protons, we're creating a concentration gradient. The protons then naturally want to get the heck away from each other, and so they push their way through an enzyme straddling the thylakoid membrane called ATP Synthase, and that enzyme uses that energy to pack an inorganic phosphate onto ADP, making ATP: the big daddy of cellular energy. All this moving along the electron transport chain requires energy, and as you might expect electrons are entering lower and lower energy states as we move along. This makes sense when you think about it. It's been a long while since those photons zapped us, and we've been pumping hydrogen ions to create ATP and splitting water and jumping onto different molecules and I'm tired just talking about it. Luckily, as 450 million years of evolution would have it, our electron is now about to be re-energized upon delivery to Photosystem I! So, PS I is a similar mix of proteins and chlorophyll molecules that we saw in PSII, but with some different products. After a couple of photons re-excite a couple of electrons, the electrons pop off, and hitch a ride onto another electron carrier. This time, all of that energy will be used to help make NADPH, which, like ATP, exists solely to carry energy around. Here, yet another enzyme helps combine two electrons and one hydrogen ion with a little something called NADP+. As you may recall from our recent talk about respiration, there are these sort of distant cousins of B vitamins that are crucial to energy conversion. And in photosynthesis, it's NADP+, and when it takes on those 2 electrons and one hydrogen ion, it becomes NADPH. So, what we're left with now, after the light dependent reactions is chemical energy in the form of ATPs and NADPHs. And also of course, we should not forget the most useful useless byproduct in the history of useless byproducts...oxygen. If anyone needs a potty break, now would be a good time...or if you want to go re-watch that rather long and complicated bit about light dependent reactions, go ahead and do that...it's not simple, and it's not going to get any simpler from here. Because now we're moving along to the Calvin Cycle! The Calvin Cycle is sometimes called the dark reactions, which is kind of a misnomer, because they generally don't occur in the dark. They occur in the day along with the rest of the reactions, but they don't require energy from photons. So it's more proper to say light-independent. Or, if you're feeling non-descriptive...just say Stage 2. Stage 2 is all about using the energy from those ATPs and NADPHs that we created in Stage 1 to produce something actually useful for the plant. The Calvin Cycle begins in the stroma, the empty space in the chloroplast, if you remember correctly. And this phase is called carbon fixation because...yeah, we're about to fix a CO2 molecule onto our starting point, Ribulose Bisphosphate or RuBP, which is always around in the chloroplast because, not only is it the starting point of the Calvin Cycle, it's also the end-point... which is why it's a cycle. CO2 is fixed to RuBP with the help of an enzyme called ribulose 1,5 bisphosphate carboxylase oxidase, which we generally shorten to RuBisCo. I'm in the chair again! Excellent! This time for a Biolo-graphy of RuBisCo. Once upon a time, a one-celled organism was like "Man, I need more carbon so I can make more little me's so I can take over the whole world." Luckily for that little organism, there was a lot of CO2 in the atmosphere, and so it evolved an enzyme that could suck up that CO2 and convert inorganic carbon into organic carbon. This enzyme was called RuBisCo, and it wasn't particularly good at its job, but it was a heck of a lot better than just hoping to run into some chemically formed organic carbon, so the organism just made a ton of it to make up for how bad it was. Not only did the little plant stick with it, it took over the entire planet, rapidly becoming the dominant form of life. Slowly, through other reactions, known as the light dependent reactions, plants increased the amount of oxygen in the atmosphere. RuBisCo, having been designed in a world with tiny amounts of oxygen in the atmosphere, started getting confused. As often as half the time RuBisCo started slicing Ribulose Bisphosphate with Oxygen instead of CO2, creating a toxic byproduct that plants then had to deal with in creative and specialized ways. This byproduct, called phosphogycolate, is believed to tinker with some enzyme functions, including some involved in the Calvin cycle, so plants have to make other enzymes that break it down into an amino acid (glycine), and some compounds that are actually useful to the Calvin cycle. But plants had already sort of gone all-in on the RuBisCo strategy and, to this day, they have to produce huge amounts of it (scientists estimate that at any given time there are about 40 billion tons of RuBisCo on the planet) and plants just deal with that toxic byproduct. Another example, my friends, of unintelligent design. Back to the cycle! So Ribulose Bisphosphate gets a CO2 slammed onto it and then immediately the whole thing gets crazy unstable. The only way to regain stability is for this new six-carbon chain to break apart creating two molecules of 3-Phosphoglycerate, and these are the first stable products of the calvin cycle. For reasons that will become clear in a moment, we're actually going to do this to three molecules of RuBP. Now we enter the second phase, Reduction. Here, we need some energy. So some ATP slams a phosphate group onto the 3-Phosphoglycerate, and then NADPH pops some electrons on and, voila, we have two molecules of Glyceraldehyde 3-Phosphate, or G3P, this is a high-energy, 3-carbon compound that plants can convert into pretty much any carbohydrate. Like glucose for short term energy storage, cellulose for structure, starch for long-term storage. And because of this, G3P is considered the ultimate product of photosynthesis. However, unfortunately, this is not the end. We need 5 G3Ps to regenerate the 3 RuBPs that we started with. We also need 9 molecules of ATP and 6 molecules of NADPH, so with all of these chemical reactions, all of this chemical energy, we can convert 3 RuBPs into 6 G3Ps but only one of those G3Ps gets to leave the cycle, the other G3Ps, of course, being needed to regenerate the original 3 Ribulose Bisphosphates. That regeneration is the last phase of the Calvin Cycle. And that is how plants turn sunlight, water, and carbon dioxide into every living thing you've ever talked to, played with, climbed on, loved, hated, or eaten. Not bad, plants. I hope you understand. If you don't, not only do we have some selected references below that you can check out, but of course, you can go re-watch anything that you didn't get and hopefully, upon review, it will make a little bit more sense. Thank you for watching. If you have questions, please leave them down in the comments below.

How photosynthesis systems function

Photosynthesis systems function by measuring gas exchange of leaves. Atmospheric carbon dioxide is taken up by leaves in the process of photosynthesis, where CO2 is used to generate sugars in a molecular pathway known as the Calvin cycle. This draw-down of CO2 induces more atmospheric CO2 to diffuse through stomata into the air spaces of the leaf. While stoma are open, water vapor can easily diffuse out of plant tissues, a process known as transpiration. It is this exchange of CO2 and water vapor that is measured as a proxy of photosynthetic rate.

The basic components of a photosynthetic system are the leaf chamber, infrared gas analyzer (IRGA), batteries and a console with keyboard, display and memory. Modern 'open system' photosynthesis systems also incorporate miniature disposable compressed gas cylinder and gas supply pipes. This is because external air has natural fluctuations in CO2 and water vapor content, which can introduce measurement noise.[1] Modern 'open system' photosynthesis systems remove the CO2 and water vapour by passage over soda lime and Drierite, then add CO2 at a controlled rate to give a stable CO2 concentration.[1] Some systems are also equipped with temperature control and a removable light unit, so the effect of these environmental variables can also be measured.

The leaf to be analysed is placed in the leaf chamber. The CO2 concentrations is measured by the infrared gas analyzer.[2] The IRGA shines infrared light through a gas sample onto a detector. CO2 in the sample absorbs energy, so the reduction in the level of energy that reaches the detector indicates the CO2 concentration. Modern IRGAs take account of the fact that H2O absorbs energy at similar wavelengths as CO2.[1][3][4] Modern IRGAs may either dry the gas sample to a constant water content or incorporate both a CO2 and a water vapour IRGA to assess the difference in CO2 and water vapour concentrations in air between the chamber entrance and outlet.[1]

The Liquid Crystal Display on the console displays measured and calculated data. The console may have a PC card slot. The stored data can be viewed on the LCD display, or sent to a PC. Some photosynthesis systems allow communication over the internet using standard internet communication protocols.

Modern photosynthetic systems may also be designed to measure leaf temperature, chamber air temperature, PAR (photosynthetically active radiation), and atmospheric pressure. These systems may calculate water use efficiency (A/E), stomatal conductance (gs), intrinsic water use efficiency (A/gs), and sub-stomatal CO2 concentration (Ci).[3] Chamber and leaf temperatures are measured with a thermistor sensor. Some systems are also designed to control environmental conditions.

A simple and general equation for Photosynthesis is: CO2+ H2O+ (Light Energy)→ C6H12O6+O2

'Open' systems or 'closed' systems

There are two distinct types of photosynthetic system; ‘open’ or ‘closed’.[1] This distinction refers to whether or not the atmosphere of the leaf-enclosing chamber is renewed during the measurement.[1][4]

In an ‘open system’, air is continuously passed through the leaf chamber to maintain CO2 in the leaf chamber at a steady concentration.[1] The leaf to be analysed is placed in the leaf chamber. The main console supplies the chamber with air at a known rate with a known concentration of CO2 and H2O.[2] The air is directed over the leaf, then the CO2 and H2O concentration of air leaving the chamber is determined.[1] The out going air will have a lower CO2 concentration and a higher H2O concentration than the air entering the chamber. The rate of CO2 uptake is used to assess the rate of photosynthetic carbon assimilation, while the rate of water loss is used to assess the rate of transpiration. Since CO2 intake and H2O release both occur through the stomata, high rates of CO2 uptake are expected to coincide with high rates of transpiration. High rates of CO2 uptake and H2O loss indicates high stomatal conductance.[5]

Because the atmosphere is renewed, 'open' systems are not seriously affected by outward gas leakage and adsorption or absorption by the materials of the system.[1]

In contrast, in a ‘closed system’, the same atmosphere is continuously measured over a period of time to establish rates of change in the parameters.[6] The CO2 concentration in the chamber is decreased, while the H2O concentration increases. This is less tolerant to leakage and material ad/absorption.

Calculating photosynthetic rate and related parameters

Calculations used in 'open system' systems;

For CO2 to diffuse into the leaf, stomata must be open, which permits the outward diffusion of water vapour. Therefore, the conductance of stomata influences both photosynthetic rate (A) and transpiration (E), and the usefulness of measuring A is enhanced by the simultaneous measurement of E. The internal CO2 concentration (Ci) is also quantified, since Ci represents an indicator of the availability of the primary substrate (CO2) for A.[3][5]

A carbon assimilation is determined by measuring the rate at which the leaf assimilates CO2 .[5] The change in CO2 is calculated as CO2 flowing into leaf chamber, in μmol mol−1 CO2, minus flowing out from leaf chamber, in μmol mol−1. The photosynthetic rate (Rate of CO2 exchange in the leaf chamber) is the difference in CO2 concentration through chamber, adjusted for the molar flow of air per m2 of leaf area, mol m−2 s−1.

The change in H2O vapour pressure is water vapour pressure out of leaf chamber, in mbar, minus the water vapour pressure into leaf chamber, in mbar. Transpiration rate is differential water vapour concentration, mbar, multiplied by the flow of air into leaf chamber per square meter of leaf area, mol s−1 m−2, divided by atmospheric pressure, in mBar.

Calculations used in 'closed system' systems;

A leaf is placed in the leaf-chamber, with a known area of leaf enclosed. Once the chamber is closed, carbon dioxide concentration gradually declines. When the concentration decreases past a certain point a timer is started, and is stopped as the concentration passes at a second point. The difference between these concentrations gives the change in carbon dioxide in ppm.[6] Net photosynthetic rate in micro grams carbon dioxide s−1 is given by;

(V • p • 0.5 • FSD • 99.7) / t[6]

where V = the chamber volume in liters, p = the density of carbon dioxide in mg cm−3, FSD = the carbon dioxide concentration in ppm corresponding to the change in carbon dioxide in the chamber, t = the time in seconds for the concentration to decrease by the set amount. Net photosynthesis per unit leaf area is derived by dividing net photosynthetic rate by the leaf area enclosed by the chamber.[6]

Applications

Since photosynthesis, transpiration and stomatal conductance are an integral part of basic plant physiology, estimates of these parameters can be used to investigate numerous aspects of plant biology. The plant-scientific community has generally accepted photosynthetic systems as reliable and accurate tools to assist research. There are numerous peer-reviewed articles in scientific journals which have used a photosynthetic system. To illustrate the utility and diversity of applications of photosynthetic systems, below you will find brief descriptions of research using photosynthetic systems;

  • Researchers from the Technion - Israel Institute of Technology and a number of US institutions studied the combined effects of drought and heat stress on Arabidopsis thaliana. Their research suggests that the combined effects of heat and drought stress cause sucrose to serve as the major osmoprotectant.[7]
  • Plant physiologists from The University of Putra Malaysia and The University of Edinburgh investigated the relative effects of tree age and tree size on the physiological attributes of two broadleaf species. A photosynthetic system was used to measure photosynthetic rate per unit of leaf mass.[8]
  • Researchers at University of California-Berkeley found that water loss from leaves in Sequoia sempervirens is ameliorated by heavy fog in the Western US. Their research suggests that fog may help the leaves retain water and enable the trees to fix more carbon during active growth periods.[9]
  • The effect of CO2 enrichment on the photosynthetic behavior of an endangered medicinal herb was investigated by this team at Garhwal University, India. Photosynthetic rate (A) was stimulated during the first 30 days, then significantly decreased. Transpiration rate (E) decreased significantly throughout the CO2 enrichment, whereas stomatal conductance (gs) significantly reduced initially. Overall, it was concluded that the medicinally important part of this plant showed increased growth.[10]
  • Researchers at the University of Trás-os-Montes and Alto Douro, Portugal grew Grapevines in outside plots and in Open-Top Chambers which elevated the level of CO2. A photosynthetic system was used to measure CO2 assimilation rate (A), stomatal conductance (gs), transpiration rate (E), and internal CO2 concentration/ambient CO2 ratio (Ci/Ca). The environmental conditions inside the chambers caused a significant reduction in yield.[11]
  • A study of Nickel bioremediation involving poplar (Populas nigra), conducted by researchers at the Bulgarian Academy of Sciences and the National Research Institute of Italy (Consiglio Nazionale delle Ricerche), found that Ni-induced stress reduced photosynthesis rates, and that this effect was dependent upon leaf Ni content. In mature leaves, Ni stress led to emission of cis-β-ocimene, whereas in developing leaves, it led to enhanced isoprene emissions.[12]
  • Plant physiologists in Beijing measured photosynthetic rate, transpiration rate and stomatal conductance in plants which accumulate metal and those that do not accumulate metal. Seedlings were grown in the presence of 200 or 400 μM CdCl2. This was used to elucidate the role of antioxidative enzyme in the adaptive responses of metal-accumulators and non-accumulators to Cadmium stress.[13]
  • In a study of drought resistance and salt tolerance of a rice variety, researchers at the National Center of Plant Gene Research and the Huazhong Agricultural University in Wuhan, China found that a transgenic rice variety showed greater drought resistance than a conventional variety. Over expression of the stress response gene SNAC1 led to reduced water loss, but no significant change in photosynthetic rate.[14]
  • This Canadian team examined the dynamic responses of Stomatal conductance (gs) net photosynthesis (A) to a progressive drought in nine poplar clones with contrasting drought tolerance. gs and A were measured using a photosynthetic system. Plants were either well-watered or drought preconditioned.[15]
  • Researchers at Banaras Hindu University, India, investigated the potential of sewage sludge to be used in agriculture as an alternative disposal technique. Agricultural soil growing rice had sewage sludge added at different rates. Rates of photosynthesis and stomatal conductance of the rice were measured to examine the biochemical and physiological responses of sewage addition.[16]
  • Researchers from Lancaster University, The University of Liverpool, and The University of Essex, UK, measured isoprene emission rates from an oil palm tree. Samples were collected using a photosynthetic system that controlled PAR and leaf temperature (1000 μmol m−2 s−1; 30 °C). It had thought that PAR and temperature are the main controls of isoprene emission from the biosphere. This research showed that isoprene emissions from oil palm tree are under strong circadian control.[17]
  • The ecophysiological diversity and the breeding potential of wild coffee populations in Ethiopia was evaluated as a thesis submitted to The Rheinischen Friedrich-Wilhelms-University of Bonn, Germany. Complementary field and garden studies of populations native to a range of climatic conditions were examined. Plant ecophysiological behavior was assessed by a number of system parameters, including gas exchange, which was measured using a photosynthetic system.[18]
  • A collaborative project between researchers at the University of Cambridge, UK, the Australian Research Council Center of Excellence, and the Australian National University resulted in validation of a model that describes carbon isotope discrimination for crassulacean acid metabolism using Kalanchoe daigremontiana.[19]
  • Instruments of this type can also be used as a standard for plant stress measurement. Difficult to measure types of plant stress such as Cold stress, and water stress can be measured with this type of instrumentation.

References

  1. ^ a b c d e f g h i Long, S. P.; Farage, P. K.; Garcia, R. L. (1996). "Measurement of leaf and canopy photosynthetic CO2exchange in the field". Journal of Experimental Botany. 47 (11): 1629–1642. doi:10.1093/jxb/47.11.1629.
  2. ^ a b Donahue, R. A.; Poulson, M. E.; Edwards, G. E. (1997). "A method for measuring whole plant photosynthesis in Arabidopsis thaliana". Photosynthesis Research. 52 (3): 263–269. doi:10.1023/A:1005834327441. S2CID 10595811.
  3. ^ a b c "Archived copy". Archived from the original on 2011-07-18. Retrieved 2011-02-22.{{cite web}}: CS1 maint: archived copy as title (link)
  4. ^ a b Jahnke, S. (2001). "Atmospheric CO2 concentration does not directly affect leaf respiration in bean or poplar". Plant, Cell and Environment. 24 (11): 1139–1151. doi:10.1046/j.0016-8025.2001.00776.x.
  5. ^ a b c "Field Photosynthesis Measurement Systems". New Mexico State University.
  6. ^ a b c d Williams, B. A.; Gurner, P. J.; Austin, R. B. (1982). "A new infra-red gas analyser and portable photosynthesis meter". Photosynthesis Research. 3 (2): 141–151. doi:10.1007/BF00040712. PMID 24458234. S2CID 21600885.
  7. ^ Rizhsky, L.; Liang, H.; Shuman, J.; Shulaev, V.; Davletova, S.; Mittler, R. (2004). "When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress". Plant Physiology. 134 (4): 1683–96. doi:10.1104/pp.103.033431. PMC 419842. PMID 15047901.
  8. ^ Abdul-Hamid, H.; Mencuccini, M. (2008). "Age- and size-related changes in physiological characteristics and chemical composition of Acer pseudoplatanus and Fraxinus excelsior trees". Tree Physiology. 29 (1): 27–38. doi:10.1093/treephys/tpn001. PMID 19203930.
  9. ^ Burgess, S. S. O.; Dawson, T. E. (2004). "The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration". Plant, Cell and Environment. 27 (8): 1023–1034. doi:10.1111/j.1365-3040.2004.01207.x.
  10. ^ Ashish Kumar Chaturvedi *, Rajiv Kumar Vashistha, Neelam Rawat, Pratti Prasad and Mohan Chandra Nautiyal (2009). "Effect of CO2 Enrichment on Photosynthetic Behavior of Podophyllum hexandrum Royle, an Endangered Medicinal Herb" (PDF). Journal of American Science. 5 (5): 113–118. Retrieved 2011-02-22.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ Moutinho-Pereira, J. M.; Bacelar, E. A.; Gonçalves, B.; Ferreira, H. F.; Coutinho, J. O. F.; Correia, C. M. (2009). "Effects of Open-Top Chambers on physiological and yield attributes of field grown grapevines". Acta Physiologiae Plantarum. 32 (2): 395–403. doi:10.1007/s11738-009-0417-x. S2CID 24936515.
  12. ^ Velikova, V.; Tsonev, T.; Loreto, F.; Centritto, M. (2010). "Changes in photosynthesis, mesophyll conductance to CO2, and isoprenoid emissions in Populus nigra plants exposed to excess nickel". Environmental Pollution. 159 (5): 1058–1066. doi:10.1016/j.envpol.2010.10.032. PMID 21126813.
  13. ^ Wang, Z.; Zhang, Y.; Huang, Z.; Huang, L. (2008). "Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress". Plant and Soil. 310 (1–2): 137–149. doi:10.1007/s11104-008-9641-1. S2CID 24591323.
  14. ^ Hu, H.; Dai, M.; Yao, J.; Xiao, B.; Li, X.; Zhang, Q.; Xiong, L. (2006). "Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice". Proceedings of the National Academy of Sciences. 103 (35): 12987–12992. Bibcode:2006PNAS..10312987H. doi:10.1073/pnas.0604882103. PMC 1559740. PMID 16924117.
  15. ^ Silim, S.; Nash, R.; Reynard, D.; White, B.; Schroeder, W. (2009). "Leaf gas exchange and water potential responses to drought in nine poplar (Populus spp.) clones with contrasting drought tolerance". Trees. 23 (5): 959–969. doi:10.1007/s00468-009-0338-8. S2CID 25902821.
  16. ^ Singh, R. P.; Agrawal, M. (2010). "Biochemical and Physiological Responses of Rice (Oryza sativa L.) Grown on Different Sewage Sludge Amendments Rates". Bulletin of Environmental Contamination and Toxicology. 84 (5): 606–12. doi:10.1007/s00128-010-0007-z. PMID 20414639. S2CID 34480590.
  17. ^ Wilkinson, M. J.; Owen, S. M.; Possell, M.; Hartwell, J.; Gould, P.; Hall, A.; Vickers, C.; Nicholas Hewitt, C. (2006). "Circadian control of isoprene emissions from oil palm (Elaeis guineensis)" (PDF). The Plant Journal. 47 (6): 960–8. doi:10.1111/j.1365-313X.2006.02847.x. PMID 16899082.
  18. ^ "Ecophysiological diversity of wild Coffea arabica populations in Ecophysiological diversity of wild Coffea arabica populations in" (PDF). Retrieved 2011-02-22.
  19. ^ Griffiths, H.; Cousins, A. B.; Badger, M. R.; Von Caemmerer, S. (2006). "Discrimination in the Dark. Resolving the Interplay between Metabolic and Physical Constraints to Phosphoenolpyruvate Carboxylase Activity during the Crassulacean Acid Metabolism Cycle". Plant Physiology. 143 (2): 1055–67. doi:10.1104/pp.106.088302. PMC 1803711. PMID 17142488.

External links

This page was last edited on 25 September 2023, at 17:29
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.