To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Photoflash capacitor

From Wikipedia, the free encyclopedia

A photoflash capacitor is a high-voltage electrolytic capacitor used in flash cameras, professional flashes, and also in solid-state laser power supplies. Their usual purpose is to briefly power a flash tube, used to illuminate a photographic subject or optically pump a laser rod. As flash tubes require very high current for a very short time to operate, photoflash capacitors are designed to supply high discharge current pulses without excessive internal heating.

YouTube Encyclopedic

  • 1/3
    Views:
    2 810
    1 016
    379
  • 🔌USING FLASH CAPACITOR TO SHOCK SOMEONE !!!!🔌
  • Flash capacitor
  • Capacitor bank. (Overclocking a camera flash)

Transcription

Fundamentals

The principal properties of a capacitor are capacitance, working voltage, equivalent series resistance (ESR), equivalent series inductance (ESL), and working temperature

Compared with electrolytic capacitors usually used for power supply filtering at power frequency, a photoflash capacitor is designed to have lower ESR, ESL, and capacitance manufacturing tolerance, but does not need as high a working temperature.

Design

The light energy emitted by a flash is supplied by the capacitor, and is proportional to the product of the capacitance and the voltage squared; photoflash capacitors may have capacitance in the range 80-240 microfarads (μF) and voltages from 180 to 330 volts for flash units built into small disposable and compact cameras, increasing for units delivering higher light energy.[1] A typical manufacturer's range includes capacitors operating at 330–380V, with capacitance from 80 to 1,500 μF[2] While normal electrolytic capacitors are often operated at not more than half their nominal voltage due to their high derating, photoflash capacitors are typically operated at their nominal working voltage (labelled as "WV" or "W.V." rather than just "V").

Photoflash capacitors are not subject to the high temperatures of cased electronic equipment in continuous operation, with nearby components and sometimes the capacitors themselves dissipating heat; they are often rated at a maximum operating temperature rate of typically 55 °C, compared to 85 °C–105 °C or more for capacitors for continuous use in electronic equipment. In most electronic applications an electrolytic capacitor can have a capacitance much larger than its nominal value without detracting from circuit performance; general-purpose electrolytics are often specified to have capacitance between 20% below and 80% above rated value, although tighter tolerances are available. The light energy of a flash is proportional to the capacitance and large variations are not acceptable, typical tolerance is -10+20%.[2]

Photoflash capacitors are designed to deliver a brief pulse of very high current, and are consequently sometimes used in railgun and coilgun designs.

References

  1. ^ Forrest M. Mims, III, Forrest Mims' Circuit Scrapbook II, Howard W. Sams & Co., Indianapolis IN, ISBN 0-672-22552-2, page 149. Mims gives the rating of the Kodak Disc camera flash as 160 μF and 180 volts.
  2. ^ a b Hitachi Photo Flash Aluminum Electrolytic Capacitors
This page was last edited on 20 February 2024, at 17:21
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.