To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Phase shift module

From Wikipedia, the free encyclopedia

A microwave (6 to 18 GHz) Phase Shifter and Frequency Translator

A phase shift module is a microwave network module which provides a controllable phase shift of the RF signal.[1][2][3] Phase shifters are used in phased arrays.[4][5][6]

YouTube Encyclopedic

  • 1/3
    Views:
    1 514
    713
    1 247
  • MWE UNIT 2 TOPIC 6 Wave Guide Phase Shifter
  • 14 5 BIST2 Design a Phase Shifter for LFSR TPG
  • Comparison of Phase shift on Oscilloscope

Transcription

Classification

Active versus passive

Active phase shifters provide gain, while passive phase shifters are lossy.

Analog versus digital

  • Analog phase shifters provide a continuously variable phase shift or time delay.[7]
  • Digital phase shifters provide a discrete set of phase shifts or time delays. Discretization leads to quantization errors. Digital phase shifters require parallel bus control.
  • Differential, single-ended or waveguide:
    • Differential transmission line: A differential transmission line is a balanced two-conductor transmission line in which the phase difference between currents is 180 degrees. The differential mode is less susceptible to common mode noise and cross talk.
    • Antenna selection: dipole, tapered slot antenna (TSA)
    • Examples: coplanar strip, slotline
  • Single-ended transmission line: A single-ended transmission line is a two-conductor transmission line in which one conductor is referenced to a common ground, the second conductor. The single-ended mode is more susceptible to common-mode noise and cross talk.
    • Antenna selection: double folded slot (DFS), microstrip, monopole
    • Examples: CPW, microstrip, stripline
  • Waveguide
    • Antenna selection: waveguide, horn

Frequency band

One-conductor or dielectric transmission line versus two-conductor transmission line

  • One-conductor or dielectric transmission line (optical fibre, finline, waveguide):
  • Two-conductor transmission line (CPW, microstrip, slotline, stripline):
    • Differential or single-ended
    • TEM or quasi-TEM mode is TTD or quasi-TTD
  • Phase shifters versus TTD phase shifter
    • A phase shifter provides an invariable phase shift with frequency, and is used for fixed-beam frequency-invariant pattern synthesis.
    • A TTD phase shifter provides an invariable time delay with frequency, and is used for squint-free and ultra wideband (UWB) beam steering.

Reciprocal versus non-reciprocal

    • Reciprocal: T/R
    • Non-reciprocal: T or R

Technology

  • Non semi-conducting (ferrite, ferro-electric, RF MEMS, liquid crystal):
    • Passive
  • Semi-conducting (RF CMOS, GaAs. SiGe, InP, GaN or Sb):

Design

  • Loaded-line:
    • Distortion:
      • Distorted if lumped
      • Undistorted and TTD if distributed
  • Reflect-type:
    • Applications: reflect arrays (S11 phase shifters)
    • Distortion:
      • Distorted if S21 phase shifter, because of 3 dB coupler
      • Undistorted and TTD if S11 phase shifter
  • Switched-network
    • Network:
      • High-pass or low-pass
      • or T
    • Distortion:
      • Undistorted if the left-handed high-pass sections cancel out the distortion of the right-handed low-pass sections
  • Switched-line
    • Applications: UWB beam steering
    • Distortion: undistorted and TTD
  • Vector summing

Figures of merit

  • Number of effective bits, if digital [bit]
  • Biasing: current-driven, high-voltage electrostatic [mA, V]
  • DC power consumption [mW]
  • Distortion: group velocity dispersion (GVD) [ps2/nm]
  • Gain [dB] if active, loss [dB] if passive
  • Linearity: IP3, P1dB [dBm]
  • Phase shift / noise figure [°/dB] (phase shifter) or time delay / noise figure [ps/dB] (TTD phase shifter)
  • Power handling [mW, dBm]
  • Reliability [cycles, MTBF]
  • Size [mm2]
  • Switching time [ns]

References

  1. ^ Microwave Solid State Circuit Design, 2nd Ed., by Inder Bahl and Prakash Bhartia, John Wiley & Sons, 2003 (Chapter 12)
  2. ^ RF MEMS Theory, Design and Technology by Gabriel Rebeiz, John Wiley & Sons, 2003 (Chapter 9-10)
  3. ^ Antenna Engineering Handbook, 4th Ed., by John Volakis, McGraw-Hill, 2007 (Chapter 21)
  4. ^ Phased Array Antennas, 2nd Ed., by R. C. Hansen, John Wiley & Sons, 1998
  5. ^ Phased Array Antenna Handbook, 2nd Ed., by Robert Mailloux, Artech House, 2005
  6. ^ Phased Array Antennas by Arun K. Bhattacharyya, John Wiley & Sons, 2006
  7. ^ Microwave Phase Shifter Archived 2003-03-27 at the Wayback Machine information from Herley General Microwave

External links

This page was last edited on 8 December 2022, at 18:59
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.