To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time. 4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds # Phase modulation

Phase modulation (PM) is a modulation pattern for conditioning communication signals for transmission. It encodes a message signal as variations in the instantaneous phase of a carrier wave. Phase modulation is one of the two principal forms of angle modulation, together with frequency modulation.

In phase modulation, the instantaneous amplitude of the baseband signal modifies the phase of the carrier signal keeping its amplitude and frequency constant

The phase of a carrier signal is modulated to follow the changing signal level (amplitude) of the message signal. The peak amplitude and the frequency of the carrier signal are maintained constant, but as the amplitude of the message signal changes, the phase of the carrier changes correspondingly.

Phase modulation is widely used for transmitting radio waves and is an integral part of many digital transmission coding schemes that underlie a wide range of technologies like Wi-Fi, GSM and satellite television.

PM is used for signal and waveform generation in digital synthesizers, such as the Yamaha DX7, to implement FM synthesis. A related type of sound synthesis called phase distortion is used in the Casio CZ synthesizers.

• 1/3
Views:
18 405
872
126 083
• Continuous Wave Modulation - Amplitude Modulation, Frequency and Phase Modulation (AM, FM and PM)
• Phase Modulation 101
• Digital modulation: ASK, FSK, and PSK

## Theory

The modulating wave (blue) is modulating the carrier wave (red), resulting the PM signal (green). g(t) = π/2 * sin(2*2πt+ π/2*sin(3*2πt))

Phase modulation changes the phase angle of the complex envelope in proportion to the message signal.

If m(t) is the message signal to be transmitted and the carrier onto which the signal is modulated is

$c(t)=A_{c}\sin \left(\omega _{\mathrm {c} }t+\phi _{\mathrm {c} }\right).$ ,

then the modulated signal is

$y(t)=A_{c}\sin \left(\omega _{\mathrm {c} }t+m(t)+\phi _{\mathrm {c} }\right).$ This shows how $m(t)$ modulates the phase - the greater m(t) is at a point in time, the greater the phase shift of the modulated signal at that point. It can also be viewed as a change of the frequency of the carrier signal, and phase modulation can thus be considered a special case of FM in which the carrier frequency modulation is given by the time derivative of the phase modulation.

The modulation signal could here be

$m(t)=\cos \left(\omega _{\mathrm {c} }t+h\omega _{\mathrm {m} }(t)\right)\$ The mathematics of the spectral behavior reveals that there are two regions of particular interest:

$2\left(h+1\right)f_{\mathrm {M} }$ ,
where $f_{\mathrm {M} }=\omega _{\mathrm {m} }/2\pi$ and $h$ is the modulation index defined below. This is also known as Carson's Rule for PM.

## Modulation index

As with other modulation indices, this quantity indicates by how much the modulated variable varies around its unmodulated level. It relates to the variations in the phase of the carrier signal:

$h\,=\Delta \theta \,$ ,

where $\Delta \theta$ is the peak phase deviation. Compare to the modulation index for frequency modulation. This page was last edited on 27 October 2021, at 01:26