To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Phase-transfer catalyst

From Wikipedia, the free encyclopedia

In chemistry, a phase-transfer catalyst or PTC is a catalyst that facilitates the transition of a reactant from one phase into another phase where reaction occurs. Phase-transfer catalysis is a special form of catalysis and can act through homogeneous catalysis or heterogeneous catalysis methods depending on the catalyst used. Ionic reactants are often soluble in an aqueous phase but insoluble in an organic phase in the absence of the phase-transfer catalyst. The catalyst functions like a detergent for solubilizing the salts into the organic phase. Phase-transfer catalysis refers to the acceleration of the reaction upon the addition of the phase-transfer catalyst.

Liquid-liquid-liquid triphase transfer catalysis,Molecular Catalysis 466 (2019) 112–121

By using a PTC process, one can achieve faster reactions, obtain higher conversions or yields, make fewer byproducts, eliminate the need for expensive or dangerous solvents that will dissolve all the reactants in one phase, eliminate the need for expensive raw materials and/or minimize waste problems.[1] Phase-transfer catalysts are especially useful in green chemistry—by allowing the use of water, the need for organic solvents is reduced.[2][3]

Contrary to common perception, PTC is not limited to systems with hydrophilic and hydrophobic reactants. PTC is sometimes employed in liquid/solid and liquid/gas reactions. As the name implies, one or more of the reactants are transported into a second phase which contains both reactants.

YouTube Encyclopedic

  • 1/3
    Views:
    10 628
    1 839
    14 500
  • Phase Transfer Catalyst - Quaternary Ammonium Salt - Organic Chemistry
  • Phase transfer catalyst • MSc first semester• complete explanation in easy way
  • Phase transfer catalyst organic Msc chemistry Ammonium quartnery salt, Sn rxn NaCn,alkyl halide,#PTC

Transcription

Types

Phase-transfer catalysts for anionic reactants are often quaternary ammonium salts. Commercially important catalysts include benzyltriethylammonium chloride, methyltricaprylammonium chloride and methyltributylammonium chloride. Organic phosphonium salts are also used, e.g., hexadecyltributylphosphonium bromide. The phosphonium salts tolerate higher temperatures, but are unstable toward base, degrading to phosphine oxide.[4]

For example, the nucleophilic substitution reaction of an aqueous sodium cyanide solution with an ethereal solution of 1-bromooctane does not readily occur. The 1-bromooctane is poorly soluble in the aqueous cyanide solution, and the sodium cyanide does not dissolve well in the ether. Upon the addition of small amounts of hexadecyltributylphosphonium bromide, a rapid reaction ensues to give nonyl nitrile:

By the quaternary phosphonium cation, cyanide ions are "ferried" from the aqueous phase into the organic phase.[5]

Subsequent work demonstrated that many such reactions can be performed rapidly at around room temperature using catalysts such as tetra-n-butylammonium bromide and methyltrioctylammonium chloride in benzene/water systems.[6]

An alternative to the use of "quat salts" is to convert alkali metal cations into hydrophobic cations. In the research lab, crown ethers are used for this purpose. Polyethylene glycols are more commonly used in practical applications. These ligands encapsulate alkali metal cations (typically Na+ and K+), affording large lipophilic cations. These polyethers have a hydrophilic "interiors" containing the ion and a hydrophobic exterior.

Chiral phase-transfer catalysts have also been demonstrated.[7]

Applications

PTC is widely exploited industrially.[4] Polyesters for example are prepared from acyl chlorides and bisphenol-A. Phosphothioate-based pesticides are generated by PTC-catalyzed alkylation of phosphothioates. One of the more complex applications of PTC involves asymmetric alkylations, which are catalyzed by chiral quaternary ammonium salts derived from cinchona alkaloids.[8]

See also

References

  1. ^ Katole DO, Yadav GD. Process intensification and waste minimization using liquid-liquid-liquid triphase transfer catalysis for the synthesis of 2-((benzyloxy)methyl)furan. Molecular Catalysis 2019;466:112–21. https://doi.org/10.1016/j.mcat.2019.01.004
  2. ^ J. O. Metzger (1998). "Solvent-Free Organic Syntheses". Angewandte Chemie International Edition. 37 (21): 2975–2978. doi:10.1002/(SICI)1521-3773(19981116)37:21<2975::AID-ANIE2975>3.0.CO;2-A. PMID 29711128.
  3. ^ Mieczyslaw Makosza (2000). "Phase-transfer catalysis. A general green methodology in organic synthesis". Pure Appl. Chem. 72 (7): 1399–1403. doi:10.1351/pac200072071399.
  4. ^ a b Marc Halpern "Phase-Transfer Catalysis" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim. doi:10.1002/14356007.a19_293
  5. ^ Starks, C.M. (1971). "Phase-transfer catalysis. I. Heterogeneous reactions involving anion transfer by quaternary ammonium and phosphonium salts". J. Am. Chem. Soc. 93 (1): 195–199. doi:10.1021/ja00730a033.
  6. ^ Herriott, A.W.; Picker, D. (1975). "phase-transfer catalysis. Evaluation of catalysis". J. Am. Chem. Soc. 97 (9): 2345–2349. doi:10.1021/ja00842a006.
  7. ^ Phipps, Robert J.; Hamilton, Gregory L.; Toste, F. Dean (2012). "The progression of chiral anions from concepts to applications in asymmetric catalysis". Nature Chemistry. 4 (8): 603–614. Bibcode:2012NatCh...4..603P. doi:10.1038/nchem.1405. PMID 22824891.
  8. ^ Takuya Hashimoto and Keiji Maruoka "Recent Development and Application of Chiral Phase-Transfer Catalysts" Chem. Rev. 2007, 107, 5656-5682. doi:10.1021/cr068368n
This page was last edited on 29 January 2024, at 00:35
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.