To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Pfitzner–Moffatt oxidation

From Wikipedia, the free encyclopedia

The Pfitzner–Moffatt oxidation, sometimes referred to as simply the Moffatt oxidation, is a chemical reaction for the oxidation of primary and secondary alcohols to aldehydes and ketones, respectively. The oxidant is a combination of dimethyl sulfoxide (DMSO) and dicyclohexylcarbodiimide (DCC). The reaction was first reported by J. Moffatt and his student K. Pfitzner in 1963.[1][2]

Stoichiometry and mechanism

The reaction requires one equivalent each of the diimide, which is the dehydrating agent, and the sulfoxide, the oxidant:

(CH3)2SO + (CyN)2C + R2CHOH → (CH3)2S + (CyNH)2CO + R2C=O

Typically the sulfoxide and diimide are used in excess.[3] The reaction cogenerates dimethyl sulfide and a urea. Dicyclohexylurea ((CyNH)2CO) can be difficult to remove from the product.

In terms of mechanism, the reaction is proposed to involve the intermediary of an sulfonium group, formed by a reaction between DMSO and the carbodiimide.

This species is highly reactive and is attacked by the alcohol. Rearrangement give an alkoxysulfonium ylide which decomposes to give dimethyl sulfide and the carbonyl compound.

This reaction has been largely displaced by the Swern oxidation, which also uses DMSO as an oxidant in the presence of an electrophilic activator. Swern oxidations tend to give higher yields and simpler workup; however, they typically employ cryogenic conditions.[4][5]

See also

References

  1. ^ Pfitzner, K. E.; Moffatt, J. G. (1963). "A New and Selective Oxidation of Alcohols". J. Am. Chem. Soc. 85 (19): 3027–3028. doi:10.1021/ja00902a036.
  2. ^ J. G. Moffatt, “Sulfoxide-Carbodiimide and Related Oxidations” in Oxidation vol. 2, R. L. Augustine, D. J. Trecker, Eds. (Dekker, New York, 1971) pp 1–64.
  3. ^ John G. Moffatt (1967). "Cholane-24-al". Org. Synth. 47: 25. doi:10.15227/orgsyn.047.0025.
  4. ^ Tidwell, T. T. (1990). "Oxidation of Alcohols by Activated Dimethyl Sulfoxide and Related Reactions: An Update". Synthesis. 1990 (10): 857–870. doi:10.1055/s-1990-27036.
  5. ^ Lee, T. V. Compr. Org. Synth. 1991, 7, 291–303. (Review)
This page was last edited on 30 May 2023, at 17:57
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.