To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

From Wikipedia, the free encyclopedia

Skeletal formula of pentane
Skeletal formula of pentane with all explicit hydrogens added
Preferred IUPAC name
Other names
Quintane;[1] Refrigerant-4-13-0
  • 109-66-0 checkY
3D model (JSmol)
ECHA InfoCard 100.003.358 Edit this at Wikidata
EC Number
  • 203-692-4
MeSH pentane
RTECS number
  • RZ9450000
UN number 1265
  • InChI=1S/C5H12/c1-3-5-4-2/h3-5H2,1-2H3 checkY
Molar mass 72.151 g·mol−1
Appearance Colourless liquid
Odor Gasoline-like[3]
Density 0.626 g mL−1; 0.6262 g mL−1 (at 20 °C)
Melting point −130.5 to −129.1 °C; −202.8 to −200.3 °F; 142.7 to 144.1 K
Boiling point 35.9 to 36.3 °C; 96.5 to 97.3 °F; 309.0 to 309.4 K
40 mg L−1 (at 20 °C)
log P 3.255
Vapor pressure 57.90 kPa (at 20.0 °C)
7.8 nmol Pa−1 kg−1
Acidity (pKa) ~45
Basicity (pKb) ~59
UV-vismax) 200 nm
-63.05·10−6 cm3/mol
Viscosity 0.240 mPa·s (at 20 °C)
167.19 J K−1 mol−1
263.47 J K−1 mol−1
−174.1–−172.9 kJ mol−1
−3.5095–−3.5085 MJ mol−1
Safety data sheet See: data page
GHS pictograms
GHS02: Flammable
GHS07: Harmful
GHS08: Health hazard
GHS09: Environmental hazard
GHS Signal word Danger
H225, H304, H336, H411
P210, P261, P273, P301+310, P331
NFPA 704 (fire diamond)
Flash point −49.0 °C (−56.2 °F; 224.2 K)
260.0 °C (500.0 °F; 533.1 K)
Explosive limits 1.5–7.8%[3]
Lethal dose or concentration (LD, LC):
  • 3 g kg−1 (dermal, rabbit)
  • 5 g kg−1 (oral, mouse)
130,000 mg/m3 (mouse, 30 min)
128,200 ppm (mouse, 37 min)
325,000 mg/m3 (mouse, 2 hr)[5]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 1000 ppm (2950 mg/m3)[3]
REL (Recommended)
TWA 120 ppm (350 mg/m3) C 610 ppm (1800 mg/m3) [15-minute][3]
IDLH (Immediate danger)
1500 ppm[3]
Related compounds
Related alkanes
Supplementary data page
Refractive index (n),
Dielectric constantr), etc.
Phase behaviour
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Infobox references

Pentane is an organic compound with the formula C5H12—that is, an alkane with five carbon atoms. The term may refer to any of three structural isomers, or to a mixture of them: in the IUPAC nomenclature, however, pentane means exclusively the n-pentane isomer; the other two are called isopentane (methylbutane) and neopentane (dimethylpropane). Cyclopentane is not an isomer of pentane because it has only 10 hydrogen atoms where pentane has 12.

Pentanes are components of some fuels and are employed as specialty solvents in the laboratory. Their properties are very similar to those of butanes and hexanes.

Industrial uses

Pentanes are some of the primary blowing agents used in the production of polystyrene foam and other foams. Usually, a mixture of n-, i-, and increasingly cyclopentane is used for this purpose.

Acid-catalyzed isomerization gives isopentane, which is used in producing high-octane fuels.[6]

Because of their low boiling points, low cost, and relative safety, pentanes are used as a working medium in geothermal power stations in some blended refrigerants also used as a working medium in organic rankine cycles.

Pentanes are solvents in many ordinary products, e.g. in some pesticides.[7]

Laboratory use

Pentanes are relatively inexpensive and are the most volatile liquid alkanes at room temperature, so they are often used in the laboratory as solvents that can be conveniently and rapidly evaporated. However, because of their nonpolarity and lack of functionality, they dissolve only nonpolar and alkyl-rich compounds. Pentanes are miscible with most common nonpolar solvents such as chlorocarbons, aromatics, and ethers.

They are often used in liquid chromatography.

Physical properties

The boiling points of the pentane isomers range from about 9 to 36 °C. As is the case for other alkanes, the more thickly branched isomers tend to have lower boiling points.

The same tends to be true for the melting points of alkane isomers, and that of isopentane is 30 °C lower than that of n-pentane. However, the melting point of neopentane, the most heavily branched of the three, is 100 °C higher than that of isopentane. The anomalously high melting point of neopentane has been attributed to the tetrahedral molecules packing more closely in solid form. But this explanation is contradicted by the fact that neopentane has a lower density than the other two isomers,[8] and the high melting point is actually caused by neopentane’s significantly lower entropy of fusion.

The branched isomers are more stable (have lower heat of formation and heat of combustion) than n-pentane. The difference is 1.8 kcal/mol for isopentane, and 5 kcal/mol for neopentane.[9][10]

Rotation about two central single C-C bonds of n-pentane produces four different conformations.[11]

Reactions and occurrence

Like other alkanes, pentanes are largely unreactive at standard room temperature and conditions - however, with sufficient activation energy (e.g., an open flame), they readily oxidize to form carbon dioxide and water:

C5H12 + 8 O2 → 5 CO2 + 6 H2O + heat/energy

Like other alkanes, pentanes undergo free radical chlorination:

C5H12 + Cl2 → C5H11Cl + HCl

Such reactions are unselective; with n-pentane, the result is a mixture of the 1-, 2-, and 3-chloropentanes, as well as more highly chlorinated derivatives. Other radical halogenations can also occur.

Pentane is a component of exhaled breath for some individuals. A degradation product of unsaturated fatty acids, its presence is associated with certain diseases and cancers.[12]


  1. ^ Hofmann, August Wilhelm Von (1 January 1867). "I. On the action of trichloride of phosphorus on the salts of the aromatic monamines". Proceedings of the Royal Society of London. 15: 54–62. doi:10.1098/rspl.1866.0018.
  2. ^ International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 59. doi:10.1039/9781849733069. ISBN 978-0-85404-182-4.
  3. ^ a b c d e NIOSH Pocket Guide to Chemical Hazards. "#0486". National Institute for Occupational Safety and Health (NIOSH).
  4. ^ Record of n-Pentane in the GESTIS Substance Database of the Institute for Occupational Safety and Health, accessed on 19 April 2011.
  5. ^ "n-Pentane". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  6. ^ Karl Griesbaum, Arno Behr, Dieter Biedenkapp, Heinz-Werner Voges, Dorothea Garbe, Christian Paetz, Gerd Collin, Dieter Mayer, Hartmut Höke (2002). "Hydrocarbons". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a13_227. ISBN 978-3527306732.CS1 maint: uses authors parameter (link)
  7. ^ Milne, G.W.A., ed. (2005). Gardner's Commercially Important Chemicals: Synonyms, Trade Names, and Properties. Hoboken, New Jersey: John Wiley & Sons, Inc. p. 477. ISBN 978-0-471-73518-2.
  8. ^ Wei, James (1999). "Molecular Symmetry, Rotational Entropy, and Elevated Melting Points". Industrial & Engineering Chemistry Research. American Chemical Society (ACS). 38 (12): 5019–5027. doi:10.1021/ie990588m. ISSN 0888-5885.
  9. ^ From the values listed at Standard enthalpy change of formation (data table).
  10. ^ Good, W.D (1970). "The enthalpies of combustion and formation of the isomeric pentanes". The Journal of Chemical Thermodynamics. Elsevier BV. 2 (2): 237–244. doi:10.1016/0021-9614(70)90088-1. ISSN 0021-9614.
  11. ^ Roman M. Balabin (2009). "Enthalpy Difference between Conformations of Normal Alkanes: Raman Spectroscopy Study of n-Pentane and n-Butane". J. Phys. Chem. A. 113 (6): 1012–9. doi:10.1021/jp809639s. PMID 19152252.
  12. ^ Phillips, Michael; Herrera, Jolanta; Krishnan, Sunithi; Zain, Mooena; Greenberg, Joel; Cataneo, Renee N. (1999). "Variation in volatile organic compounds in the breath of normal humans". Journal of Chromatography B: Biomedical Sciences and Applications. 729 (1–2): 75–88. doi:10.1016/S0378-4347(99)00127-9. PMID 10410929.

External links

This page was last edited on 6 June 2021, at 15:45
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.