To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Pauli–Villars regularization

From Wikipedia, the free encyclopedia

In theoretical physics, Pauli–Villars regularization (P–V) is a procedure that isolates divergent terms from finite parts in loop calculations in field theory in order to renormalize the theory. Wolfgang Pauli and Felix Villars published the method in 1949, based on earlier work by Richard Feynman, Ernst Stueckelberg and Dominique Rivier.[1]

In this treatment, a divergence arising from a loop integral (such as vacuum polarization or electron self-energy) is modulated by a spectrum of auxiliary particles added to the Lagrangian or propagator. When the masses of the fictitious particles are taken as an infinite limit (i.e., once the regulator is removed) one expects to recover the original theory.

This regulator is gauge invariant in an abelian theory due to the auxiliary particles being minimally coupled to the photon field through the gauge covariant derivative. It is not gauge covariant in a non-abelian theory, though, so Pauli–Villars regularization is more difficult to use in QCD calculations. P–V serves as a helpful alternative to the more commonly used dimensional regularization in specific circumstances, such as in chiral phenomena, where a change of dimension alters the properties of the Dirac gamma matrices.

Gerard 't Hooft and Martinus J. G. Veltman invented, in addition to dimensional regularization, the method of unitary regulators,[2] which is a Lagrangian-based Pauli–Villars method with a discrete spectrum of auxiliary masses, using the path-integral formalism.

YouTube Encyclopedic

  • 1/3
    Views:
    1 699
    1 740
    442
  • Mod-05 Lec-36 Electron Selfenergy
  • Mod-05 Lec-38 Photon Selfenergy II
  • Mod-03 Lec-42 Lagrangian formulation of QED, Divergences in Green\'s functions

Transcription

Examples

Pauli–Villars regularization consists of introducing a fictitious mass term. For example, we would replace a photon propagator , by , where can be thought of as the mass of a fictitious heavy photon, whose contribution is subtracted from that of an ordinary photon.[3]

See also

Notes

  1. ^ Schweber, S. S. (1994). QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga. Princeton, N.J.: Princeton University Press. ISBN 9780691033273.
  2. ^ G. 't Hooft, M. Veltman, Diagrammar, CERN report 73-9 (1973), see Secs. 2 and 5-8; reprinted in 't Hooft, G. (1994). Under the Spell of Gauge Principle. Singapore: World Scientific.
  3. ^ Peskin; Shroeder (1995). An Introduction to Quantum Field Theory (Reprint ed.). Westview Press. ISBN 0-201-50397-2.

References

This page was last edited on 26 February 2024, at 21:23
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.