To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Parshin's conjecture

From Wikipedia, the free encyclopedia

In mathematics, more specifically in algebraic geometry, Parshin's conjecture (also referred to as the Beilinson–Parshin conjecture) states that for any smooth projective variety X defined over a finite field, the higher algebraic K-groups vanish up to torsion:[1]

It is named after Aleksei Nikolaevich Parshin and Alexander Beilinson.

Finite fields

The conjecture holds if by Quillen's computation of the K-groups of finite fields,[2] showing in particular that they are finite groups.

Curves

The conjecture holds if by the proof of Corollary 3.2.3 of Harder.[3] Additionally, by Quillen's finite generation result[4] (proving the Bass conjecture for the K-groups in this case) it follows that the K-groups are finite if .

References

  1. ^ Conjecture 51 in Kahn, Bruno (2005). "Algebraic K-Theory, Algebraic Cycles and Arithmetic Geometry". In Friedlander, Eric; Grayson, Daniel (eds.). Handbook of K-Theory I. Springer. pp. 351–428.
  2. ^ Quillen, Daniel (1972). "On the cohomology and K-theory of the general linear groups over a finite field". Ann. of Math. 96: 552–586.
  3. ^ Harder, Günter (1977). "Die Kohomologie S-arithmetischer Gruppen über Funktionenkörpern". Invent. Math. 42: 135–175. doi:10.1007/bf01389786.
  4. ^ Grayson, Dan (1982). "Finite generation of K-groups of a curve over a finite field (after Daniel Quillen)". Algebraic K-theory, Part I (Oberwolfach, 1980) (PDF). Lecture Notes in Math. Vol. 966. Berlin, New York: Springer.
This page was last edited on 22 June 2022, at 04:50
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.