To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Osculating curve

From Wikipedia, the free encyclopedia

A curve C containing a point P where the radius of curvature equals r, together with the tangent line and the osculating circle touching C at P

In differential geometry, an osculating curve is a plane curve from a given family that has the highest possible order of contact with another curve. That is, if F is a family of smooth curves, C is a smooth curve (not in general belonging to F), and P is a point on C, then an osculating curve from F at P is a curve from F that passes through P and has as many of its derivatives (in succession, from the first derivative) at P equal to the derivatives of C as possible.[1][2]

The term derives from the Latinate root "osculate", to kiss, because the two curves contact one another in a more intimate way than simple tangency.[3]

YouTube Encyclopedic

  • 1/3
    Views:
    5 154
    9 943
    2 198
  • CalcBLUE 1 : Ch. 8.3 : Curvature & the Osculating Circle
  • Lecture 2011.07.08 Part 01/6 Finding the Osculating Circle for a Planar Curve
  • Multivariable Calculus | The Normal and Osculating Planes

Transcription

Examples

Osculating ellipses – The spiral is not drawn: we see it as the locus of points where the ellipses are especially close to each other.

Examples of osculating curves of different orders include:

  • The tangent line to a curve C at a point p, the osculating curve from the family of straight lines. The tangent line shares its first derivative (slope) with C and therefore has first-order contact with C.[1][2][4]
  • The osculating circle to C at p, the osculating curve from the family of circles. The osculating circle shares both its first and second derivatives (equivalently, its slope and curvature) with C.[1][2][4]
  • The osculating parabola to C at p, the osculating curve from the family of parabolas, has third order contact with C.[2][4]
  • The osculating conic to C at p, the osculating curve from the family of conic sections, has fourth order contact with C.[2][4]

Generalizations

The concept of osculation can be generalized to higher-dimensional spaces, and to objects that are not curves within those spaces. For instance an osculating plane to a space curve is a plane that has second-order contact with the curve. This is as high an order as is possible in the general case.[5]

In one dimension, analytic curves are said to osculate at a point if they share the first three terms of their Taylor expansion about that point. This concept can be generalized to superosculation, in which two curves share more than the first three terms of their Taylor expansion.

See also

References

  1. ^ a b c Rutter, J. W. (2000), Geometry of Curves, CRC Press, pp. 174–175, ISBN 9781584881667.
  2. ^ a b c d e Williamson, Benjamin (1912), An elementary treatise on the differential calculus: containing the theory of plane curves, with numerous examples, Longmans, Green, p. 309.
  3. ^ Max, Black (1954–1955), "Metaphor", Proceedings of the Aristotelian Society, New Series, 55: 273–294. Reprinted in Johnson, Mark, ed. (1981), Philosophical Perspectives on Metaphor, University of Minnesota Press, pp. 63–82, ISBN 9780816657971. P. 69: "Osculating curves don't kiss for long, and quickly revert to a more prosaic mathematical contact."
  4. ^ a b c d Taylor, James Morford (1898), Elements of the Differential and Integral Calculus: With Examples and Applications, Ginn & Company, pp. 109–110.
  5. ^ Kreyszig, Erwin (1991), Differential Geometry, Toronto University Mathematical Expositions, vol. 11, Courier Dover Publications, pp. 32–33, ISBN 9780486667218.
This page was last edited on 18 March 2024, at 12:49
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.