To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

# Orthogonal transformation

In linear algebra, an orthogonal transformation is a linear transformation T : V → V on a real inner product space V, that preserves the inner product. That is, for each pair u, v of elements of V, we have[1]

${\displaystyle \langle u,v\rangle =\langle Tu,Tv\rangle \,.}$

Since the lengths of vectors and the angles between them are defined through the inner product, orthogonal transformations preserve lengths of vectors and angles between them. In particular, orthogonal transformations map orthonormal bases to orthonormal bases.

Orthogonal transformations are injective: if ${\displaystyle Tv=0}$ then ${\displaystyle 0=\langle Tv,Tv\rangle =\langle v,v\rangle }$, hence ${\displaystyle v=0}$, so the kernel of ${\displaystyle T}$ is trivial.

Orthogonal transformations in two- or three-dimensional Euclidean space are stiff rotations, reflections, or combinations of a rotation and a reflection (also known as improper rotations). Reflections are transformations that reverse the direction front to back, orthogonal to the mirror plane, like (real-world) mirrors do. The matrices corresponding to proper rotations (without reflection) have a determinant of +1. Transformations with reflection are represented by matrices with a determinant of −1. This allows the concept of rotation and reflection to be generalized to higher dimensions.

In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix. Its rows are mutually orthogonal vectors with unit norm, so that the rows constitute an orthonormal basis of V. The columns of the matrix form another orthonormal basis of V.

If an orthogonal transformation is invertible (which is always the case when V is finite-dimensional) then its inverse is another orthogonal transformation. Its matrix representation is the transpose of the matrix representation of the original transformation.

• 1/3
Views:
64 837
479 711
47 030
• Orthogonal matrices preserve angles and lengths | Linear Algebra | Khan Academy
• Linear transformations and matrices | Essence of linear algebra, chapter 3
• Example using orthogonal change-of-basis matrix to find transformation matrix | Khan Academy

## Examples

Consider the inner-product space ${\displaystyle (\mathbb {R} ^{2},\langle \cdot ,\cdot \rangle )}$ with the standard euclidean inner product and standard basis. Then, the matrix transformation

${\displaystyle T={\begin{bmatrix}\cos(\theta )&-\sin(\theta )\\\sin(\theta )&\cos(\theta )\end{bmatrix}}:\mathbb {R} ^{2}\to \mathbb {R} ^{2}}$

is orthogonal. To see this, consider

{\displaystyle {\begin{aligned}Te_{1}={\begin{bmatrix}\cos(\theta )\\\sin(\theta )\end{bmatrix}}&&Te_{2}={\begin{bmatrix}-\sin(\theta )\\\cos(\theta )\end{bmatrix}}\end{aligned}}}

Then,

{\displaystyle {\begin{aligned}&\langle Te_{1},Te_{1}\rangle ={\begin{bmatrix}\cos(\theta )&\sin(\theta )\end{bmatrix}}\cdot {\begin{bmatrix}\cos(\theta )\\\sin(\theta )\end{bmatrix}}=\cos ^{2}(\theta )+\sin ^{2}(\theta )=1\\&\langle Te_{1},Te_{2}\rangle ={\begin{bmatrix}\cos(\theta )&\sin(\theta )\end{bmatrix}}\cdot {\begin{bmatrix}-\sin(\theta )\\\cos(\theta )\end{bmatrix}}=\sin(\theta )\cos(\theta )-\sin(\theta )\cos(\theta )=0\\&\langle Te_{2},Te_{2}\rangle ={\begin{bmatrix}-\sin(\theta )&\cos(\theta )\end{bmatrix}}\cdot {\begin{bmatrix}-\sin(\theta )\\\cos(\theta )\end{bmatrix}}=\sin ^{2}(\theta )+\cos ^{2}(\theta )=1\\\end{aligned}}}

The previous example can be extended to construct all orthogonal transformations. For example, the following matrices define orthogonal transformations on ${\displaystyle (\mathbb {R} ^{3},\langle \cdot ,\cdot \rangle )}$:

${\displaystyle {\begin{bmatrix}\cos(\theta )&-\sin(\theta )&0\\\sin(\theta )&\cos(\theta )&0\\0&0&1\end{bmatrix}},{\begin{bmatrix}\cos(\theta )&0&-\sin(\theta )\\0&1&0\\\sin(\theta )&0&\cos(\theta )\end{bmatrix}},{\begin{bmatrix}1&0&0\\0&\cos(\theta )&-\sin(\theta )\\0&\sin(\theta )&\cos(\theta )\end{bmatrix}}}$