To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Organokrypton chemistry

From Wikipedia, the free encyclopedia

Organokrypton chemistry describes the synthesis and properties of organokrypton compounds, chemical compounds containing a carbon to krypton chemical bond.

Far fewer such compounds are known than organoxenon compounds. The first organokrypton compound, HKrCCH, was reported in 2003 and made by photolytic insertion of a krypton atom into acetylene.[1] Similar work was then done on diacetylene and cyanoacetylene, producing HKrC4H and HKrC3N.[2] All these were made in matrix isolation and are stable up to 40 K.[3] HKrCCF and HCCKrF have also been experimentally produced in matrix isolation.[4]

Dications generated by dissociative electron ionisation of 2,4,6-trimethylpyridine react with krypton to form the organokrypton cations C8H7NKr2+ and C8H8NKr2+.[5] Reaction of acetylene dications with krypton produced HCCKr2+.[6]

References

  1. ^ Khriachtchev, Leonid; Tanskanen, Hanna; Cohen, Arik; Gerber, R. Benny; Lundell, Jan; Pettersson, Mika; Kiljunen, Harri; Räsänen, Markku (2003). "A Gate to Organokrypton Chemistry: HKrCCH". Journal of the American Chemical Society. 125 (23): 6876–6877. doi:10.1021/ja0355269. PMID 12783534.
  2. ^ Khriachtchev, Leonid; Räsänen, Markku; Gerber, R. Benny (2009). "Noble-Gas Hydrides: New Chemistry at Low Temperatures". Accounts of Chemical Research. 42 (1): 183–191. doi:10.1021/ar800110q. PMID 18720951.
  3. ^ Bartlett, Neil (2003). "The Noble Gases". Chemical and Engineering News. 81 (36): 32–34. doi:10.1021/cen-v081n036.p032.
  4. ^ Khriachtchev, Leonid; Domanskaya, Alexandra; Lundell, Jan; Akimov, Alexander; Räsänen, Markku; Misochko, Eugenii (2010). "Matrix-Isolation and ab Initio Study of HNgCCF and HCCNgF Molecules (Ng = Ar, Kr, and Xe)". The Journal of Physical Chemistry A. 114 (12): 4181–4187. Bibcode:2010JPCA..114.4181K. doi:10.1021/jp1001622. hdl:10138/23938. PMID 20205379.
  5. ^ Zins, Emilie-Laure; Schröder, Detlef (2011). "Influence of the structure of medium-sized aromatic precursors on the reactivity of their dications towards rare gases". International Journal of Mass Spectrometry. 299 (1): 53–58. Bibcode:2011IJMSp.299...53Z. doi:10.1016/j.ijms.2010.09.017.
  6. ^ Ascenzi, Daniela; Tosi, Paolo; Roithová, Jana; Ricketts, Claire L.; Schröder, Detlef; Lockyer, Jessica F.; Parkes, Michael A.; Price, Stephen D. (2008). "Generation of the organo-rare gas dications HCCRg2+ (Rg = Ar and Kr) in the reaction of acetylene dications with rare gases". Physical Chemistry Chemical Physics. 10 (47): 7121–7128. Bibcode:2008PCCP...10.7121A. doi:10.1039/B810398D. PMID 19039346.


This page was last edited on 17 October 2023, at 15:58
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.