To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Order-4-5 square honeycomb

From Wikipedia, the free encyclopedia

Order-4-5 square honeycomb
Type Regular honeycomb
Schläfli symbols {4,4,5}
Coxeter diagrams
Cells {4,4}
Faces {4}
Edge figure {5}
Vertex figure {4,5}
Dual {5,4,4}
Coxeter group [4,4,5]
Properties Regular

In the geometry of hyperbolic 3-space, the order-4-5 square honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,4,5}. It has five square tiling {4,4} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many square tiling existing around each vertex in an order-5 square tiling vertex arrangement.

YouTube Encyclopedic

  • 1/5
    Views:
    37 265
    281 024
    5 784
    116 441
    3 882
  • 3D Logo Design | Adobe Illustrator CC | HD | Honeycomb (2017)
  • Starting a New Bee Hive - Which Hive is Best ? Where Do I get my Bees?
  • 5. Honeycombs: Out-of-plane Behavior
  • SolidWorks /SolidWorks Tutorial Honeycomb /SolidWorks
  • Oana& magicogomitolo.yarnshopping.com

Transcription

Images


Poincaré disk model

Ideal surface

Related polytopes and honeycombs

It a part of a sequence of regular polychora and honeycombs with square tiling cells: {4,4,p}

{4,4,p} honeycombs
Space E3 H3
Form Affine Paracompact Noncompact
Name {4,4,2} {4,4,3} {4,4,4} {4,4,5} {4,4,6} ...{4,4,∞}
Coxeter















Image
Vertex
figure

{4,2}

{4,3}

{4,4}

{4,5}

{4,6}

{4,∞}

Order-4-6 square honeycomb

Order-4-6 square honeycomb
Type Regular honeycomb
Schläfli symbols {4,4,6}
{4,(4,3,4)}
Coxeter diagrams
=
Cells {4,4}
Faces {4}
Edge figure {6}
Vertex figure {4,6}

{(4,3,4)}
Dual {6,4,4}
Coxeter group [4,4,6]
[4,((4,3,4))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-4-6 square honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,4,6}. It has six square tiling, {4,4}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many square tiling existing around each vertex in an order-6 square tiling vertex arrangement.


Poincaré disk model

Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {4,(4,3,4)}, Coxeter diagram, , with alternating types or colors of square tiling cells. In Coxeter notation the half symmetry is [4,4,6,1+] = [4,((4,3,4))].

Order-4-infinite square honeycomb

Order-4-infinite square honeycomb
Type Regular honeycomb
Schläfli symbols {4,4,∞}
{4,(4,∞,4)}
Coxeter diagrams
=
Cells {4,4}
Faces {4}
Edge figure {∞}
Vertex figure {4,∞}

{(4,∞,4)}
Dual {∞,4,4}
Coxeter group [∞,4,3]
[4,((4,∞,4))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-4-infinite square honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,4,∞}. It has infinitely many square tiling, {4,4}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many square tiling existing around each vertex in an infinite-order square tiling vertex arrangement.


Poincaré disk model

Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {4,(4,∞,4)}, Coxeter diagram, = , with alternating types or colors of square tiling cells. In Coxeter notation the half symmetry is [4,4,∞,1+] = [4,((4,∞,4))].

See also

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I, II)
  • George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [1]
  • Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, (2013)[2]
  • Visualizing Hyperbolic Honeycombs arXiv:1511.02851 Roice Nelson, Henry Segerman (2015)

External links

This page was last edited on 28 January 2024, at 00:14
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.