To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Orbiting Binary Black Hole Investigation Satellite

From Wikipedia, the free encyclopedia

Orbiting Binary Black Hole Investigation Satellite
(ORBIS)
Mission typeAstrophysics
OperatorTokyo Metropolitan University
Websitewww.comp.sd.tmu.ac.jp/ssl/orbis/Top.html
Mission duration1.5 years (planned)[1]
Spacecraft properties
Spacecraft typemicrosatellite
Launch mass46 kg[2]
Dimensions46 ×46 ×44 cm [2]
Power78 W[3] (solar panels)
Start of mission
Launch date?
Orbital parameters
RegimeLow Earth orbit
Periapsis altitude550 km [2]
Apoapsis altitude550 km
Inclination[2]
Period96 min [2]
Epochplanned
Main X-ray astronomy
Focal length20 cm (7.9 in)[2]
WavelengthsX-ray
Transponders
BandS band[1]
 

Orbiting Binary Black Hole Investigation Satellite (ORBIS) is a small space telescope still in development by Japan that will study binary black holes in the X-ray region.

The ORBIS concept won the first prize at the 18th Satellite Design Contest in 2010,[3] and of 2015 it was on preliminary design and undergoing thermal simulations by the Tokyo Metropolitan University[3][4] with support from Japan Aerospace Exploration Agency (JAXA) and the Institute of Space and Astronautical Science (ISAS).[3][1][2]

The spacecraft will have a mass of about 46 kg and it features a propulsion system using 60 wt% hydrogen peroxide.[1] Launch was aimed for 2020.[5][6][7]

YouTube Encyclopedic

  • 1/5
    Views:
    11 680 613
    1 358 634
    9 275 805
    5 923 414
    2 132
  • The Universe is Hostile to Computers
  • National Science Foundation/EHT Press Conference Revealing First Image of Black Hole
  • First Image of a Black Hole!
  • Sound of Two Black Holes Colliding
  • Oscillations of binary Black Holes - Bob Wagoner (SETI Talks)

Transcription

Scientific objectives

Binary black holes (BBHs) are believed to be formed during the merger and growth of galaxies. Although several binary blackhole candidates have been identified, they have yet to be verified by long-term observations.[3][8] In order to ascertain that an object is a BBH, periodical luminosity change in X-ray wavelength must be detected. However, continuous observation of BBHs by large X-ray telescopes is difficult as such spacecraft are used by many groups and have numerous observation targets.[8] Since microsatellites have comparatively low-cost, flexibility, and can fly more often than large spacecraft, they can conduct unique studies where risks are associated.[8][9] As ORBIS is dedicated to study BBHs, it can conduct continuous observation of such bodies. The scientific goals of the microsatellite is to uncover the growth process of black holes and galaxies, and to and contribute to gravitational-wave astronomy.[2]

Some simulations have concluded that after crossing a certain distance, the energy dissipation of two approaching black holes ceases, result in them not getting closer any further.[8] However, the merger of black holes is expected to occur during the collision of galaxies.[8] This unsolved problem is known as the final parsec problem. By finding and studying black holes less than 1 pc apart, ORBIS aims to resolve this issue.[8]

Computer simulation of a binary  black hole system

References

  1. ^ a b c d Report on the current state of "Japanese Micro/Nano/Pico-satellite Projects". (PDF). page 61; University Space Engineering Consortium (UNISEC). July 2011.
  2. ^ a b c d e f g h ORBIS - Orbiting Binary black-hole Investigation Satellite. (PDF). Japan Aerospace Exploration Agency and ISAS
  3. ^ a b c d e Development of Binary Black Hole Observation Satellite "ORBIS". (PDF). Kentaro Nishi, Tokyo Metropolitan University. 20 November 2013.
  4. ^ Tokyo Metropolitan University - ORBIS. 2017
  5. ^ [1] (in Japanese)
  6. ^ [2] (in Japanese)
  7. ^ [3] (in Japanese)
  8. ^ a b c d e f Hanada, Yukiya; Asanuma, Tasuku; Okano, Yoshinobu. "第18回衛星設計コンテスト 設計の部 バイナリブラックホール探査衛星 ORBIS 衛星設計解析書" (PDF) (in Japanese). The 18th Satellite Design Contest. Retrieved 2018-02-04.
  9. ^ Hanada, Yukiya; Asanuma, Tasuku; Okano, Yoshinobu. "巨大バイナリブラックホール探査小型衛星 ORBIS" (PDF) (in Japanese). ISAS Laboratory of Infrared Astrophysics. Retrieved 2018-02-04.
This page was last edited on 28 January 2022, at 00:43
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.