To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Lagrange invariant

From Wikipedia, the free encyclopedia

In optics the Lagrange invariant is a measure of the light propagating through an optical system. It is defined by


where y and u are the marginal ray height and angle respectively, and ȳ and ū are the chief ray height and angle. n is the ambient refractive index. In order to reduce confusion with other quantities, the symbol Ж may be used in place of H.[1] Ж2 is proportional to the throughput of the optical system (related to étendue).[1] For a given optical system, the Lagrange invariant is a constant throughout all space, that is, it is invariant upon refraction and transfer.

The optical invariant is a generalization of the Lagrange invariant which is formed using the ray heights and angles of any two rays. For these rays, the optical invariant is a constant throughout all space.[2]

See also


  1. ^ a b Greivenkamp, John E. (2004). Field Guide to Geometrical Optics. SPIE Field Guides vol. FG01. SPIE. p. 28. ISBN 0-8194-5294-7.
  2. ^ Optics Fundamentals, Newport Corporation, retrieved 9/8/2011
This page was last edited on 29 January 2021, at 00:53
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.