To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Optical frequency multiplier

From Wikipedia, the free encyclopedia

An optical frequency multiplier is a nonlinear optical device in which photons interacting with a nonlinear material are effectively "combined" to form new photons with greater energy, and thus higher frequency (and shorter wavelength). Two types of devices are currently common: frequency doublers, often based on lithium niobate (LN), lithium tantalate (LT), potassium titanyl phosphate (KTP) or lithium triborate (LBO), and frequency triplers typically made of potassium dihydrogen phosphate (KDP). Both are widely used in optical experiments that use lasers as a light source.

Harmonic generation

There are two processes that are commonly used to achieve the conversion: second-harmonic generation (SHG, also called frequency doubling), or sum-frequency generation which sums two non-similar frequencies. Direct third-harmonic generation (THG, also called frequency tripling) also exists and can be used to detect an interface between materials of different excitability. For example, it has been used to extract the outline of cells in embryos, where the cells are separated by water.[1]

Lasers

Optical frequency multipliers are common in high-power lasers, notably those used for inertial confinement fusion (ICF) experiments. ICF attempts to use a laser to heat and compress a target containing fusion fuel, and it was found in experiments with the Shiva laser that the infrared frequencies generated by the laser lost most of its energy in the hot electrons being generated early in the heating process. In order to avoid this problem much shorter wavelengths needed to be used, and experiments on the OMEGA laser and Novette laser validated the use of frequency tripling KDP crystals to convert the laser light into the ultraviolet, a process that has been used on almost every laser-driven ICF experiment since then, including the National Ignition Facility.

References

  1. ^ Nonlinear microscopy and tissue morphogenesis Laboratoire d'Optique et Biosciences, École Polytechnique, France
This page was last edited on 21 May 2021, at 12:00
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.