To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Omega-categorical theory

From Wikipedia, the free encyclopedia

In mathematical logic, an omega-categorical theory is a theory that has exactly one countably infinite model up to isomorphism. Omega-categoricity is the special case κ =  = ω of κ-categoricity, and omega-categorical theories are also referred to as ω-categorical. The notion is most important for countable first-order theories.

Equivalent conditions for omega-categoricity

Many conditions on a theory are equivalent to the property of omega-categoricity. In 1959 Erwin Engeler, Czesław Ryll-Nardzewski and Lars Svenonius, proved several independently.[1] Despite this, the literature still widely refers to the Ryll-Nardzewski theorem as a name for these conditions. The conditions included with the theorem vary between authors.[2][3]

Given a countable complete first-order theory T with infinite models, the following are equivalent:

  • The theory T is omega-categorical.
  • Every countable model of T has an oligomorphic automorphism group (that is, there are finitely many orbits on Mn for every n).
  • Some countable model of T has an oligomorphic automorphism group.[4]
  • The theory T has a model which, for every natural number n, realizes only finitely many n-types, that is, the Stone space Sn(T) is finite.
  • For every natural number n, T has only finitely many n-types.
  • For every natural number n, every n-type is isolated.
  • For every natural number n, up to equivalence modulo T there are only finitely many formulas with n free variables, in other words, for every n, the nth Lindenbaum–Tarski algebra of T is finite.
  • Every model of T is atomic.
  • Every countable model of T is atomic.
  • The theory T has a countable atomic and saturated model.
  • The theory T has a saturated prime model.

Examples

The theory of any countably infinite structure which is homogeneous over a finite relational language is omega-categorical.[5] More generally, the theory of the Fraïssé limit of any uniformly locally finite Fraïssé class is omega-categorical.[6] Hence, the following theories are omega-categorical:

Notes

  1. ^ Rami Grossberg, José Iovino and Olivier Lessmann, A primer of simple theories
  2. ^ Hodges, Model Theory, p. 341.
  3. ^ Rothmaler, p. 200.
  4. ^ Cameron (1990) p.30
  5. ^ Macpherson, p. 1607.
  6. ^ Hodges, Model theory, Thm. 7.4.1.

References

  • Cameron, Peter J. (1990), Oligomorphic permutation groups, London Mathematical Society Lecture Note Series, vol. 152, Cambridge: Cambridge University Press, ISBN 0-521-38836-8, Zbl 0813.20002
  • Chang, Chen Chung; Keisler, H. Jerome (1989) [1973], Model Theory, Elsevier, ISBN 978-0-7204-0692-4
  • Hodges, Wilfrid (1993), Model theory, Cambridge: Cambridge University Press, ISBN 978-0-521-30442-9
  • Hodges, Wilfrid (1997), A shorter model theory, Cambridge: Cambridge University Press, ISBN 978-0-521-58713-6
  • Macpherson, Dugald (2011), "A survey of homogeneous structures", Discrete Mathematics, 311 (15): 1599–1634, doi:10.1016/j.disc.2011.01.024, MR 2800979
  • Poizat, Bruno (2000), A Course in Model Theory: An Introduction to Contemporary Mathematical Logic, Berlin, New York: Springer-Verlag, ISBN 978-0-387-98655-5
  • Rothmaler, Philipp (2000), Introduction to Model Theory, New York: Taylor & Francis, ISBN 978-90-5699-313-9


This page was last edited on 19 March 2024, at 13:15
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.