To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Oblique Mercator projection

From Wikipedia, the free encyclopedia

oblique Mercator projection.

The oblique Mercator map projection is an adaptation of the standard Mercator projection. The oblique version is sometimes used in national mapping systems. When paired with a suitable geodetic datum, the oblique Mercator delivers high accuracy in zones less than a few degrees in arbitrary directional extent.

YouTube Encyclopedic

  • 1/5
    Views:
    10 129
    69 190
    2 037
    2 771
    1 910
  • Lecture 20 : Map Projections
  • Map Projections
  • Mercator’s Chart Properties – Charts – General Navigation
  • Chart Projections and Conformality - Charts - General Navigation ATPL
  • Projection Profile: Lambert's Azimuthal Equal-Area

Transcription

Standard and oblique aspects

Comparison of tangent and secant forms of normal, oblique and transverse Mercator projections with standard parallels in red

The oblique Mercator projection is the oblique aspect of the standard (or Normal) Mercator projection. They share the same underlying mathematical construction and consequently the oblique Mercator inherits many traits from the normal Mercator:

  • Both projections are cylindrical: for the Normal Mercator, the axis of the cylinder coincides with the polar axis and the line of tangency with the equator. For the transverse Mercator, the axis of the cylinder lies in the equatorial plane, and the line of tangency is any chosen meridian, thereby designated the central meridian.
  • Both projections may be modified to secant forms, which means the scale has been reduced so that the cylinder slices through the model globe.
  • Both exist in spherical and ellipsoidal versions.
  • Both projections are conformal, so that the point scale is independent of direction and local shapes are well preserved;
  • Both projections can have constant scale on the line of tangency (the equator for the normal Mercator and the central meridian for the transverse). For the ellipsoidal form, several developments in use do not have constant scale along the line (which is a geodesic) of tangency.

Since the standard great circle of the oblique Mercator can be chosen at will, it may be used to construct highly accurate maps (of narrow width) anywhere on the globe.

Spherical oblique Mercator

In constructing a map on any projection, a sphere is normally chosen to model the Earth when the extent of the mapped region exceeds a few hundred kilometers in length in both dimensions. For maps of smaller regions, an ellipsoidal model must be chosen if greater accuracy is required; see next section.

Hotine oblique Mercator projection

The Hotine oblique Mercator (also known as the rectified skew orthomorphic or 'RSO' projection) projection has approximately constant scale along the geodesic of conceptual tangency.[1] Hotine's work was extended by Engels and Grafarend in 1995 to make the geodesic of conceptual tangency have true scale.[2] The Hotine is the standard map projection used in Brunei, Malaysia, and Singapore.[3][4] It was developed by Martin Hotine in the 1940s.[5]

Space-oblique Mercator projection

The Space-oblique Mercator projection is a generalization of the oblique Mercator projection to incorporate time evolution of a satellite ground track.

See also

References

  1. ^ Snyder, John P. (1987). Map projections—A Working Manual. U.S. Government Printing Office. p. 70.
  2. ^ Engels, J.; Grafarend, E. (1995). "The oblique Mercator projection of the ellipsoid of revolution". Journal of Geodesy. 70 (1–2): 38–50. doi:10.1007/BF00863417. S2CID 121405050.
  3. ^ Glasscock, J.T.C.; Kubik, K. (1990-09-01). "Map projections used in S.E. Asia". Australian Surveyor. 35 (3): 265–270. doi:10.1080/00050326.1990.10438681. ISSN 0005-0326.
  4. ^ Grafarend, E. W.; Engels, J. (2001). Benciolini, Battista (ed.). "The Hotine Rectified Skew Orthomorphic Projection (Oblique Mercator Projection) Revisited". IV Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia. Berlin, Heidelberg: Springer. 122: 122. doi:10.1007/978-3-642-56677-6_20. ISBN 978-3-642-56677-6.
  5. ^ "The Malaysian CRS Monster :: Mike Meredith". mmeredith.net. Retrieved 2021-10-28.

External links

This page was last edited on 10 January 2023, at 17:31
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.