To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Normal-inverse-Wishart distribution

From Wikipedia, the free encyclopedia

normal-inverse-Wishart
Notation
Parameters location (vector of real)
(real)
inverse scale matrix (pos. def.)
(real)
Support covariance matrix (pos. def.)
PDF

In probability theory and statistics, the normal-inverse-Wishart distribution (or Gaussian-inverse-Wishart distribution) is a multivariate four-parameter family of continuous probability distributions. It is the conjugate prior of a multivariate normal distribution with unknown mean and covariance matrix (the inverse of the precision matrix).[1]

Definition

Suppose

has a multivariate normal distribution with mean and covariance matrix , where

has an inverse Wishart distribution. Then has a normal-inverse-Wishart distribution, denoted as

Characterization

Probability density function

Properties

Scaling

Marginal distributions

By construction, the marginal distribution over is an inverse Wishart distribution, and the conditional distribution over given is a multivariate normal distribution. The marginal distribution over is a multivariate t-distribution.

Posterior distribution of the parameters

Suppose the sampling density is a multivariate normal distribution

where is an matrix and (of length ) is row of the matrix .

With the mean and covariance matrix of the sampling distribution is unknown, we can place a Normal-Inverse-Wishart prior on the mean and covariance parameters jointly

The resulting posterior distribution for the mean and covariance matrix will also be a Normal-Inverse-Wishart

where

.


To sample from the joint posterior of , one simply draws samples from , then draw . To draw from the posterior predictive of a new observation, draw , given the already drawn values of and .[2]

Generating normal-inverse-Wishart random variates

Generation of random variates is straightforward:

  1. Sample from an inverse Wishart distribution with parameters and
  2. Sample from a multivariate normal distribution with mean and variance

Related distributions

  • The normal-Wishart distribution is essentially the same distribution parameterized by precision rather than variance. If then .
  • The normal-inverse-gamma distribution is the one-dimensional equivalent.
  • The multivariate normal distribution and inverse Wishart distribution are the component distributions out of which this distribution is made.

Notes

  1. ^ Murphy, Kevin P. (2007). "Conjugate Bayesian analysis of the Gaussian distribution." [1]
  2. ^ Gelman, Andrew, et al. Bayesian data analysis. Vol. 2, p.73. Boca Raton, FL, USA: Chapman & Hall/CRC, 2014.

References

  • Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer Science+Business Media.
  • Murphy, Kevin P. (2007). "Conjugate Bayesian analysis of the Gaussian distribution." [2]
This page was last edited on 20 February 2018, at 20:03
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.