To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Neville's algorithm

From Wikipedia, the free encyclopedia

In mathematics, Neville's algorithm is an algorithm used for polynomial interpolation that was derived by the mathematician Eric Harold Neville in 1934. Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial.

Neville's algorithm is based on the Newton form of the interpolating polynomial and the recursion relation for the divided differences. It is similar to Aitken's algorithm (named after Alexander Aitken), which is nowadays not used.

YouTube Encyclopedic

  • 1/3
    Views:
    957
    62 895
    405
  • Numerical Analysis: Data Approximation and Neville's Method Lecture 1
  • Interpolation | Lecture 43 | Numerical Methods for Engineers
  • MathTalent Numerical Analysis Sec 3.3 Data Approximation and Neville Method

Transcription

The algorithm

Given a set of n+1 data points (xi, yi) where no two xi are the same, the interpolating polynomial is the polynomial p of degree at most n with the property

p(xi) = yi for all i = 0,...,n

This polynomial exists and it is unique. Neville's algorithm evaluates the polynomial at some point x.

Let pi,j denote the polynomial of degree ji which goes through the points (xk, yk) for k = i, i + 1, ..., j. The pi,j satisfy the recurrence relation

This recurrence can calculate p0,n(x), which is the value being sought. This is Neville's algorithm.

For instance, for n = 4, one can use the recurrence to fill the triangular tableau below from the left to the right.

This process yields p0,4(x), the value of the polynomial going through the n + 1 data points (xi, yi) at the point x.

This algorithm needs O(n2) floating point operations to interpolate a single point, and O(n3) floating point operations to interpolate a polynomial of degree n.

The derivative of the polynomial can be obtained in the same manner, i.e:

Application to numerical differentiation

Lyness and Moler showed in 1966 that using undetermined coefficients for the polynomials in Neville's algorithm, one can compute the Maclaurin expansion of the final interpolating polynomial, which yields numerical approximations for the derivatives of the function at the origin. While "this process requires more arithmetic operations than is required in finite difference methods", "the choice of points for function evaluation is not restricted in any way". They also show that their method can be applied directly to the solution of linear systems of the Vandermonde type.

References

  • Press, William; Saul Teukolsky; William Vetterling; Brian Flannery (1992). "§3.1 Polynomial Interpolation and Extrapolation (encrypted)" (PDF). Numerical Recipes in C. The Art of Scientific Computing (2nd ed.). Cambridge University Press. ISBN 978-0-521-43108-8. (link is bad)
  • J. N. Lyness and C.B. Moler, Van Der Monde Systems and Numerical Differentiation, Numerische Mathematik 8 (1966) 458-464 (doi:10.1007/BF02166671)
  • Neville, E.H.: Iterative interpolation. J. Indian Math. Soc.20, 87–120 (1934)

External links

This page was last edited on 25 January 2024, at 18:53
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.