To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Neumann boundary condition

From Wikipedia, the free encyclopedia

In mathematics, the Neumann (or second-type) boundary condition is a type of boundary condition, named after Carl Neumann.[1] When imposed on an ordinary or a partial differential equation, the condition specifies the values of the derivative applied at the boundary of the domain.

It is possible to describe the problem using other boundary conditions: a Dirichlet boundary condition specifies the values of the solution itself (as opposed to its derivative) on the boundary, whereas the Cauchy boundary condition, mixed boundary condition and Robin boundary condition are all different types of combinations of the Neumann and Dirichlet boundary conditions.

YouTube Encyclopedic

  • 1/3
    Views:
    7 343
    8 238
    2 306
  • BoundaryConditions
  • ch11 5. Laplace equation with Neumann boundary condition. Wen Shen
  • ch11 10. Heat equation with Neumann Boundary condition. Wen Shen

Transcription

Examples

ODE

For an ordinary differential equation, for instance,

the Neumann boundary conditions on the interval [a,b] take the form

where α and β are given numbers.

PDE

For a partial differential equation, for instance,

where 2 denotes the Laplace operator, the Neumann boundary conditions on a domain Ω ⊂ Rn take the form

where n denotes the (typically exterior) normal to the boundary ∂Ω, and f is a given scalar function.

The normal derivative, which shows up on the left side, is defined as

where y(x) represents the gradient vector of y(x), is the unit normal, and represents the inner product operator.

It becomes clear that the boundary must be sufficiently smooth such that the normal derivative can exist, since, for example, at corner points on the boundary the normal vector is not well defined.

Applications

The following applications involve the use of Neumann boundary conditions:

See also

References

  1. ^ Cheng, A. H.-D.; Cheng, D. T. (2005). "Heritage and early history of the boundary element method". Engineering Analysis with Boundary Elements. 29 (3): 268. doi:10.1016/j.enganabound.2004.12.001.
  2. ^ Cantrell, Robert Stephen; Cosner, Chris (2003). Spatial Ecology via Reaction–Diffusion Equations. Wiley. pp. 30–31. ISBN 0-471-49301-5.
This page was last edited on 21 March 2022, at 20:59
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.