To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Nesting algorithm

From Wikipedia, the free encyclopedia

Pictorial representations of three different types of nesting algorithms: Linear, Plate and Packing

Nesting algorithms are used to make the most efficient use of material or space by evaluating many different possible combinations via recursion.

  1. Linear (1-dimensional): The simplest of the algorithms illustrated here. For an existing set there is only one position where a new cut can be placed – at the end of the last cut. Validation of a combination involves a simple Stock - Yield - Kerf = Scrap calculation.
  2. Plate (2-dimensional): These algorithms are significantly more complex. For an existing set, there may be as many as eight positions where a new cut may be introduced next to each existing cut, and if the new cut is not perfectly square then different rotations may need to be checked. Validation of a potential combination involves checking for intersections between two-dimensional objects.[1]
  3. Packing (3-dimensional): These algorithms are the most complex illustrated here due to the larger number of possible combinations. Validation of a potential combination involves checking for intersections between three-dimensional objects.

[1]

YouTube Encyclopedic

  • 1/3
    Views:
    3 217
    985
    24 258
  • 3D nesting software for volume cutting
  • Recursion in Space - 21 Isometric Models
  • Programming Interviews: Find Maximum and Minimum using Divide and Conquer

Transcription

References

  1. ^ a b Herrmann, Jeffrey; Delalio, David. "Algorithms for Sheet Metal Nesting" (PDF). IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION. Retrieved 29 August 2015.


This page was last edited on 8 February 2023, at 20:25
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.