To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Nearest-neighbor interpolation

From Wikipedia, the free encyclopedia

Nearest neighbor interpolation (blue lines) in one dimension on a (uniform) dataset (red points).
Nearest neighbor interpolation (blue lines) in one dimension on a (uniform) dataset (red points).
Nearest neighbor interpolation on a uniform 2D grid (black points). Each coloured cell indicates the area in which all the points have the black point in the cell as their nearest black point.
Nearest neighbor interpolation on a uniform 2D grid (black points). Each coloured cell indicates the area in which all the points have the black point in the cell as their nearest black point.

Nearest-neighbor interpolation (also known as proximal interpolation or, in some contexts, point sampling) is a simple method of multivariate interpolation in one or more dimensions.

Interpolation is the problem of approximating the value of a function for a non-given point in some space when given the value of that function in points around (neighboring) that point. The nearest neighbor algorithm selects the value of the nearest point and does not consider the values of neighboring points at all, yielding a piecewise-constant interpolant. The algorithm is very simple to implement and is commonly used (usually along with mipmapping) in real-time 3D rendering to select color values for a textured surface.

YouTube Encyclopedic

  • 1/3
    Views:
    7 219
    1 545
    871
  • OpenGL Depth Interpolation
  • 2D Projective Transforms
  • Image Extrapolation in Action

Transcription

Connection to Voronoi diagram

For a given set of points in space, a Voronoi diagram is a decomposition of space into cells, one for each given point, so that anywhere in space, the closest given point is inside the cell. This is equivalent to nearest neighbour interpolation, by assigning the function value at the given point to all the points inside the cell. The figures on the right side show by colour the shape of the cells.

Comparison of Nearest-neighbor interpolation  with some 1- and 2-dimensional interpolations. Black and red/yellow/green/blue dots correspond to the interpolated point and neighbouring samples, respectively.  Their heights above the ground correspond to their values.
Comparison of Nearest-neighbor interpolation with some 1- and 2-dimensional interpolations.
Black and red/yellow/green/blue dots correspond to the interpolated point and neighbouring samples, respectively.
Their heights above the ground correspond to their values.
This Voronoi diagram is an example of nearest neighbor interpolation of a random set of points (black dots) in 2D.
This Voronoi diagram is an example of nearest neighbor interpolation of a random set of points (black dots) in 2D.

See also

This page was last edited on 1 September 2021, at 22:32
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.