To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Near-equatorial orbit

From Wikipedia, the free encyclopedia

A near-equatorial orbit is an orbit that lies close to the equatorial plane of the object orbited. Such an orbit has an inclination near 0°. On Earth, such orbits lie on the celestial equator, the great circle of the imaginary celestial sphere on the same plane as the equator of Earth. A geostationary orbit is a particular type of equatorial orbit, one which is geosynchronous. A satellite in a geostationary orbit appears stationary, always at the same point in the sky, to observers on the surface.

Equatorial orbits are also advantageous for several reasons. Sites near the Equator, such as the Guiana Space Centre in Kourou, French Guiana, or Alcantara Launch Centre in Brazil, make good locations for spaceports as they have a fastest rotational speed of any latitude, 460 m/s.[1] The added velocity reduces the fuel needed to launch spacecraft to orbit. Since Earth rotates eastward, only launches eastward take advantage of this boost of speed. Westward launches, in fact, are especially difficult from the Equator because of the need to counteract the extra rotational speed.

Equatorial orbits offer other advantages, such as to communication: a spaceship in an equatorial orbit passes directly over an equatorial spaceport on every rotation,[1] in contrast to the varying ground track of an inclined orbit.

Furthermore, launches directly into equatorial orbit eliminate the need for costly adjustments to a spacecraft's trajectory. The maneuver to reach the 5° inclination of the Moon's orbit from the 28° N latitude of Cape Canaveral was originally estimated to reduce the payload capacity of the Apollo Program's Saturn V rocket by as much as 80%.[1]

YouTube Encyclopedic

  • 1/3
    2 833
    810 626
    59 336
  • Equatorial launch: How NASA, ISRO, Arianespace & others use it to their advantage!
  • Why Are Rockets Launched in Florida?
  • How Does Launching From Equator Help Rockets?


See also


  1. ^ a b c William Barnaby Faherty; Charles D. Benson (1978). "Moonport: A History of Apollo Launch Facilities and Operations". NASA Special Publication-4204 in the NASA History Series. p. Chapter 1.2: A Saturn Launch Site. Archived from the original on 2018-09-15. Retrieved 8 May 2019. Equatorial launch sites offered certain advantages over facilities within the continental United States. A launching due east from a site on the Equator could take advantage of the earth's maximum rotational velocity (460 meters per second) to achieve orbital speed. The more frequent overhead passage of the orbiting vehicle above an equatorial base would facilitate tracking and communications. Most important, an equatorial launch site would avoid the costly dogleg technique, a prerequisite for placing rockets into equatorial orbit from sites such as Cape Canaveral, Florida (28 degrees north latitude). The necessary correction in the space vehicle's trajectory could be very expensive - engineers estimated that doglegging a Saturn vehicle into a low-altitude equatorial orbit from Cape Canaveral used enough extra propellant to reduce the payload by as much as 80%. In higher orbits, the penalty was less severe but still involved at least a 20% loss of payload.

This page was last edited on 31 January 2021, at 16:38
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.