To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Naked eye, also called bare eye or unaided eye, is the practice of engaging in visual perception unaided by a magnifying, light-collecting optical instrument, such as a telescope or microscope, or eye protection.

In astronomy, the naked eye may be used to observe celestial events and objects visible without equipment, such as conjunctions, passing comets, meteor showers, and the brightest asteroids, including 4 Vesta. Sky lore and various tests demonstrate an impressive variety of phenomena visible to the unaided eye.

YouTube Encyclopedic

  • 1/5
    Views:
    1 981 481
    51 137
    564 836
    12 393
    1 519 400
  • Naked Eye Observations: Crash Course Astronomy #2
  • Naked Eye vs. Telescope #Shorts
  • Naked-Eye Comet 2024! ☄️
  • Naked eye Meaning
  • This new giant bacterium is visible to the naked eye #shorts

Transcription

Hey, Phil Plait here. Welcome to episode 2 of Crash Course Astronomy: Naked Eye Observations. Despite the salacious title, nudity is not required. In fact, given that a lot of astronomical observations are done at night, you may want to bundle up. As it relates to astronomy, “naked eye” means no binoculars, no telescope. Just you, your eyeballs, and a nice, dark site from which to view the heavens. After all, that’s how we did astronomy for thousands of years, and it’s actually pretty amazing what you can figure out about the universe just by looking at it. Imagine you’re somewhere far away from city lights, where you have an unobstructed view of the cloudless sky. The Sun sets, and for a few minutes you just watch as the sky darkens. Then, you notice a star appear in the east, just over a tree. Then another, and another, and within an hour or so you are standing beneath an incredible display, the sky spangled with stars. What do you notice right away? First, there are a lot of stars. People with normal vision can see a few thousand stars at any given time, and if you want a round number, there are very roughly six to ten thousand stars in total that are bright enough to detect by eye alone, depending on how good your sight is. The next thing you’ll notice is that they’re not all the same brightness. A handful are very bright, a few more are a bit fainter but still pretty bright, and so on. The faintest stars you can see are the most abundant, vastly outnumbering the bright ones. This is due to a combination of two effects. One is that stars aren’t all the same intrinsic, physical brightness. Some are dim bulbs, while others are monsters, blasting out as much light in one second as the sun does in a day. The second factor is that not all stars are the same distance from us. The farther away a star is, the fainter it is. Interestingly, of the two dozen or so brightest stars in the sky, half are bright because they’re close to Earth, and half are much farther away but incredibly luminous, so they still appear bright to us. This is a running theme in astronomy and science in general. Some effects you see have more than one cause. Things aren’t always as simple as they seem. The ancient Greek astronomer Hipparchus is generally credited for creating the first catalog of stars, ranking them by brightness. He came up with a system called magnitudes, where the brightest stars were 1st magnitude, the next brightest were 2nd magnitude, down to 6th magnitude. We still use a variation of this system today, thousands of years later. The faintest stars ever seen (using Hubble Space Telescope) are about magnitude 31 – the faintest star you can see with your eye is about 10 billion times brighter! The brightest star in the night sky — called Sirius, the Dog Star — is about 1000 times brighter than the faintest star you can see. Let’s take a closer look at some of those bright stars, like, say, Vega. Notice anything about it? Yeah, it looks blue. And Betelgeuse looks red. Arcturus is orange, Capella yellow. Those stars really are those colors. By eye, only the brightest stars seem to have color, while the fainter ones all just look white. That’s because the color receptors in your eye aren’t very light-sensitive, and only the brightest stars can trigger them. Another thing you’ll notice is that stars aren’t scattered evenly across the sky. They form patterns, shapes. This is mostly coincidence, but humans are pattern-recognizing animals, so it’s totally understandable that ancient astronomers divided the skies up into constellations — literally, sets or groups of stars — and named them after familiar objects. Orion is probably the most famous constellation; it really does look like a person, arms raised up, and most civilizations saw it that way. There’s also tiny Delphinus; it’s only 5 stars, but it’s easy to see it as a dolphin jumping out of the water. And Scorpius, which isn’t hard to imagine as a venomous arthropod. Others, well, not so much. Pisces is a fish? Yeah, OK. Cancer is a crab? If you say so. Although they were rather arbitrarily defined in ancient times, today we recognize 88 official constellations, and their boundaries are carefully delineated on the sky. When we say a star is in the constellation of Ophiuchus, it’s because the location of the star puts it inside that constellation’s boundaries. Think of them like states in the US; the state lines are decided upon by mutual agreement, and a city can be in one state or the other. Mind you, not every group of stars makes a constellation. The Big Dipper, for example, is only one part of the constellation of Ursa Major, the Big Bear. The bowl of the dipper is the bear’s haunches, and the handle is its tail. But, bears don't have tails! So astronomers might be great at pattern recognition, but they're terrible at zoology. Most of the brightest stars have proper names, usually Arabic. During the Dark Ages, when Europe wasn’t so scientifically minded, it was the Persian astronomer Abd al-Rahman al-Sufi who translated ancient Greek astronomy texts into Arabic, and those names have stuck with us ever since. However there are a lot more stars than there are proper names, so astronomers use other designations for them. The stars in any constellation are given Greek letters in order of their brightness, so we have Alpha Orionis, the brightest star in Orion, then Beta, and so. Of course, you run out of letters quickly, too, so most modern catalogs just use numbers; it’s a lot harder to run out of those. Of course, just seeing all those faint stars can be tough… which brings us to this week’s "Focus On." Light pollution is a serious problem for astronomers. This is light from street lamps, shopping centers, or wherever, where the light gets blasted up into the sky instead of toward the ground. This lights the up the sky, making fainter objects much more difficult to see. That’s why observatories tend to be built in remote areas, as far from cities as possible. Trying to observe faint galaxies under bright sky conditions is like trying to listen to someone 50 feet away whispering at you in a rock concert. This affects the sky you see as well. From within a big city it's impossible to see the Milky Way, the faint glowing streak across the sky that’s actually the combined light of billions of stars. It gets washed out with even mild light pollution. Your view of Orion probably looks like this: When from a dark site it looks like this: It’s not just people who are affected by this, either. Light pollution affects the way nocturnal animals hunt, how insects breed, and more, by disrupting their normal daily cycles. Cutting back light pollution is mostly just a matter of using the right kind of light fixtures outside, directing the light down to the ground. A lot of towns have worked to use better lighting, and have met with success. This is due in large part to groups like the International Dark-Sky Association, GLOBE at Night, The World at Night, and many more, who advocate using more intelligent lighting, and to help preserve our night sky. The sky belongs to everyone, and we should do what we can to make sure it’s the best possible sky we can see. Even if you don’t have dark skies, there’s another thing you can notice when you look up. If you look carefully, you might see that a couple of the brightest stars look different than the others. They don’t twinkle! That’s because they aren’t stars, they’re planets. Twinkling happens because the air over our heads is turbulent, and as it blows past, it distorts the incoming light from stars, making them appear to slightly shift position and brightness several times per second. But planets are much closer to us, and appear bigger, so the distortion doesn’t affect them as much. There are five naked eye planets (not counting Earth): Mercury, Venus, Mars, Jupiter, and Saturn. Uranus is right on the edge of visibility, and people with keen eyesight might be able to spot it. Venus is actually the third brightest natural object in the sky, after the Sun and Moon. Jupiter and Mars are frequently brighter than the brightest stars, too. If you stay outside for an hour or two, you’ll notice something else that’s pretty obvious: the stars move, like the sky is a gigantic sphere wheeling around you over the course of the night. In fact, that’s how the ancients thought of it. If you could measure it, you’d find this celestial sphere spins once every day. Stars toward the east are rising over the horizon, and stars in the west are setting, making a big circle over the course of the night (and presumably, day). This is really just a reflection of the Earth spinning, of course. The Earth rotates once a day, and we’re stuck to it, so it looks like the sky is spinning around us in the opposite direction. There’s an interesting thing that happens because of this. Look at a spinning globe. It rotates on an axis that goes through the poles, and halfway between them is the Equator. If you stand on the Equator, you make a big circle around the center of the Earth over a day. But if you move north or south, toward one pole or the other, that circle gets smaller. When you stand on the pole, you don’t make a circle at all; you just spin around in the same spot. It’s the same thing with the sky. As the sky spins over us, just like with the Earth, it has two poles and an Equator. A star on the celestial Equator makes a big circle around the sky, and stars to the north or south make smaller ones. A star right on the celestial pole wouldn’t appear to move at all, and would just hang there, like it was nailed to that spot, all night long. And this is just what we see! Photographic time exposures show it best. The motions of the stars show up as streaks. The longer the exposure, the longer the streaks as the stars rise and set, making their circular arcs in the sky. You can see stars near the celestial equator making their big circles. And, by coincidence, there’s also a middling-bright star that sits very close to the north celestial pole. That’s called Polaris, the north or pole star. Because of that, it doesn’t appear to rise or set, and it's always to the north, motionless. It really is coincidence; there’s no southern pole star, unless you count Sigma Octans, a dim bulb barely visible by eye that’s not all that close to the south pole of the sky. But even Polaris isn’t exactly on the pole -- it’s offset a teeny bit. So it does make a circle in the sky, but one so small you’d never notice. By eye, night after night, Polaris is the constant in the sky, always there, never moving. Remember, the sky’s motion is a reflection of the Earth’s motion. If you were standing on the north pole of the Earth, you’d see Polaris at the sky’s zenith — that is, straight overhead — fixed and unmoving. Stars on the celestial equator would appear to circle the horizon once per day. But this also means that stars south of the celestial equator can’t be seen from the Earth’s north pole! They’re always below the horizon. So this in turn means that which stars you see depends on where you are on Earth. At the north pole, you only see stars north of the celestial equator. At the Earth’s south pole, you only see stars south of the celestial equator. From Antarctica, Polaris is forever hidden from view. Standing on the Earth’s equator, you’d see Polaris on the horizon to the north, and Sigma Octans on the horizon to the south, and over the course of the day the entire celestial sphere would spin around you; every star in the sky is eventually visible. While Polaris may be constant, not everything is. Sometimes you just have to wait a while to notice. And to that point, you’ll have to wait a while to find out what I mean by this because we’ll be covering that in next week’s episode. Today we talked about what you can see on a clear dark night with just your eyes: thousands of stars, some brighter than others, arranged into patterns called constellations. Stars have colors, even if we can’t see them with our eyes alone, and they rise and set as the Earth spins. You can see different stars depending on where you are on Earth, and if you’re in the northern hemisphere, Polaris will always point you toward north. Crash Course is produced in association with PBS Digital Studios. This episode was written by me, Phil Plait. The script was edited by Blake de Pastino, and our consultant is Dr. Michelle Thaller. It was co-directed by Nicholas Jenkins and Michael Aranda, and the graphics team is Thought Café.

Basic properties

Some basic properties of the human eye are:

Visual perception allows a person to gain much information about their surroundings:

  • the distances and 3-dimensional position of things and persons
  • the vertical (plumb line) and the slope of plane objects
  • luminosities and colors and their changes by time and direction

In astronomy

A photographic approximation of a naked eye view of the night sky from a small rural town (top) and a metropolitan area (bottom). Light pollution dramatically reduces the visibility of stars.

The visibility of astronomical objects is strongly affected by light pollution. Even a few hundred kilometers away from a metropolitan area where the sky can appear to be very dark, it is still the residual light pollution that sets the limit on the visibility of faint objects. For most people, these are likely to be the best observing conditions within their reach. Under such "typical" dark sky conditions, the naked eye can see stars with an apparent magnitude up to +6m. Under perfect dark sky conditions where all light pollution is absent, stars as faint as +8m might be visible.[4]

The angular resolution of the naked eye is about 1; however, some people have sharper vision than that. There is anecdotal evidence that people had seen the Galilean moons of Jupiter before telescopes were invented.[5] Uranus and Vesta had most probably been seen but could not be recognized as planets because they appear so faint even at maximum brightness; Uranus's magnitude varies from +5.3m to +5.9m, and Vesta's from +5.2m to +8.5m (so that it is only visible near its opposition dates). Uranus, when discovered in 1781, was the first planet discovered using technology (a telescope) rather than being spotted by the naked eye.

Theoretically, in a typical dark sky, the dark adapted human eye would see the about 5,600 stars brighter than +6m[6] while in perfect dark sky conditions about 45,000 stars brighter than +8m might be visible.[4] In practice, the atmospheric extinction and dust reduces this number somewhat. In the center of a city, where the naked-eye limiting magnitude due to extreme amounts of light pollution can be as low as 2m, as few as 50 stars are visible. Colors can be seen but this is limited by the fact that the eye uses rods instead of cones to view fainter stars.

The visibility of diffuse objects such as star clusters and galaxies is much more strongly affected by light pollution than is that of planets and stars. Under typical dark conditions only a few such objects are visible. These include the Pleiades, h/χ Persei, the Andromeda Galaxy, the Carina Nebula, the Orion Nebula, Omega Centauri, 47 Tucanae, the Ptolemy Cluster Messier 7 near the tail of Scorpius and the globular cluster M13 in Hercules. The Triangulum Galaxy (M33) is a difficult averted vision object and only visible at all if it is higher than 50° in the sky. The globular clusters M 3 in Canes Venatici and M 92 in Hercules are also visible with the naked eye under such conditions. Under really dark sky conditions, however, M33 is easy to see, even in direct vision. Many other Messier objects are also visible under such conditions.[4] The most distant objects that have been seen by the naked eye are nearby bright galaxies such as Centaurus A,[7] Bode's Galaxy,[8][9][10] Sculptor Galaxy,[10] and Messier 83.[11]

Five planets can be recognized as planets from Earth with the naked eye: Mercury, Venus, Mars, Jupiter, and Saturn. Under typical dark sky conditions Uranus (magnitude +5.8) can be seen as well with averted vision, as can the asteroid Vesta at its brighter oppositions. Under perfect dark sky conditions Neptune may be visible to the Naked eye only if Neptune is at its maximum brightness (magnitude +7.8). The Sun and the Moon—the remaining noticeable naked-eye objects of the solar system—are sometimes added to make seven "planets". During daylight only the Moon and Sun are obvious naked eye objects, but in many cases Venus can be spotted in daylight and in rarer cases Jupiter. Close to sunset and sunrise, bright stars like Sirius or even Canopus can be spotted with the naked eye as long as one knows the exact position in which to look. Historically, the zenith of naked-eye astronomy was the work of Tycho Brahe (1546–1601). He built an extensive observatory to make precise measurements of the heavens without any instruments for magnification. In 1610, Galileo Galilei pointed a telescope towards the sky. He immediately discovered the moons of Jupiter and the phases of Venus, among other things.

Meteor showers are better observed by naked eye than with binoculars. Such showers include the Perseids (10–12 August) and the December Geminids. Some 100 satellites per night, the International Space Station and the Milky Way are other popular objects visible to the naked eye.[12]

19 March 2008 A major gamma-ray burst (GRB) known as GRB 080319B, set a new record as the farthest object that can be seen from Earth with the naked eye. It occurred about 7.5 billion years ago, the light taking that long to reach Earth.

In geodesy and navigation

Many other things can be estimated without an instrument. If an arm is stretched the span of the hand corresponds to an angle of 18 to 20°. The distance of a person, just covered up by the outstretched thumbnail, is about 100 meters. The vertical can be estimated to about 2° and, in the northern hemisphere, observing the Pole Star and using a protractor can give the observer's geographic latitude, up to 1 degree of accuracy.

The Babylonians, Mayans, ancient Egyptians, ancient Indians, and Chinese measured all the basics of their respective time and calendar systems by naked eye:

  • the length of a year and a month to ±0.1 hour or to better than 1 minute (0.001%)
  • the 24 hours of a day, and the equinoxes
  • the periods of the planets were calculated by Mayan astronomers, to within 5 to 10 minutes accuracy in the case of Venus and Mars.

In a similar manner star occultations by the moon can be observed. By using a digital clock an accuracy of 0.2 second is possible. This represents only 200 meters at the moon's distance of 385,000 km.

Small objects and maps

Observing a nearby small object without a magnifying glass or a microscope, the size of the object depends on the viewing distance. Under normal lighting conditions (light source ~ 1000 lumens at height 600–700 mm, viewing angle ~ 35 degrees) the angular size recognized by naked eye will be round 1 arc minute = 1/60 degrees = 0.0003 radians.[1] At a viewing distance of 16" = ~ 400 mm, which is considered a normal reading distance in the US, the smallest object resolution will be ~ 0.116 mm. For inspection purposes laboratories use a viewing distance of 200–250 mm,[citation needed] which gives the smallest size of the object recognizable to the naked eye of ~0.058–0.072 mm (58–72 micrometers). The accuracy of a measurement ranges from 0.1 to 0.3 mm and depends on the experience of the observer. The latter figure is the usual positional accuracy of faint details in maps and technical plans.

Environmental pollution

The Milky Way is visible over the Very Large Telescope, demonstrating clear atmosphere above Paranal Observatory.[13]

A clean atmosphere is indicated by the fact that the Milky Way is visible. Comparing the zenith with the horizon shows how the "blue quality" is degraded depending on the amount of air pollution and dust. The twinkling of a star is an indication of the turbulence of the air. This is of importance in meteorology and for the "seeing" of astronomy.

Light pollution is a significant problem for amateur astronomers but becomes less late at night when many lights are shut off. Air dust can be seen even far away from a city by its "light dome".

See also

Literature

  • Davidson, N.: Sky Phenomena: A Guide to Naked Eye Observation of the Heavens. FlorisBooks (208p), ISBN 0-86315-168-X, Edinburgh 1993.
  • Gerstbach G.: Auge und Sehen – der lange Weg zu digitalem Erkennen. Astro Journal Sternenbote, 20p., Vol.2000/8, Vienna 2000.
  • Kahmen H. (Ed.): Geodesy for Geotechnical and Structural Engineering. Proceedings, Eisenstadt 1999.

References

  1. ^ a b Yanoff, Myron; Duker, Jay S. (2009). Ophthalmology 3rd Edition. MOSBY Elsevier. p. 54. ISBN 978-0444511416.
  2. ^ Wandell, B. (1995). "Foundations of Vision." Sinauer, Sunderland, MA as cited in Neurobiology of Attention. (2005). Eds. Laurent Itti, Geraint Rees, and John K., Tsotos. Chapter 102, Elder, J.H. et al. Elsevier, Inc.
  3. ^ "Light Pollution and Astronomy: How Dark Are Your Night Skies?". skyandtelescope.com. 18 July 2006. Archived from the original on 31 March 2014. Retrieved 6 August 2013.
  4. ^ a b c John E. Bortle (February 2001). "The Bortle Dark-Sky Scale". Sky & Telescope. Archived from the original on 23 March 2009. Retrieved 18 November 2009.
  5. ^ Zezong, Xi, "The Discovery of Jupiter's Satellite Made by Gan De 2000 years Before Galileo", Chinese Physics 2 (3) (1982): 664–67.
  6. ^ "Vmag<6". SIMBAD Astronomical Database. Retrieved 3 December 2009.
  7. ^ "Aintno Catalog". astronomy-mall.com.
  8. ^ SEDS, Messier 81
  9. ^ S. J. O'Meara (1998). The Messier Objects. Cambridge: Cambridge University. ISBN 978-0-521-55332-2.
  10. ^ a b "Messier 81 naked-eye". 10 January 1997. Retrieved 13 November 2022.
  11. ^ Inglis Mike (2007). "Galaxies". Patrick Moore's Practical Astronomy Series: 157–189. doi:10.1007/978-1-84628-736-7_4. ISBN 978-1-85233-890-9.
  12. ^ "Night sky and its wonders - Naked eye astronomy | Hurtling Rock". Archived from the original on 21 September 2013. Retrieved 12 September 2013.
  13. ^ "Mars, 2099?". ESO Picture of the Week. Retrieved 25 June 2012.

External links

This page was last edited on 14 January 2024, at 23:48
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.