To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

A single NOR gate
A single NOR gate

A NOR gate is a logic gate which gives a positive output only when both inputs are negative.

Like NAND gates, NOR gates are so-called "universal gates" that can be combined to form any other kind of logic gate. For example, the first embedded system, the Apollo Guidance Computer, was built exclusively from NOR gates, about 5,600 in total for the later versions. Today, integrated circuits are not constructed exclusively from a single type of gate. Instead, EDA tools are used to convert the description of a logical circuit to a netlist of complex gates (standard cells) or transistors (full custom approach).

NOR

A NOR gate is logically an inverted OR gate. It has the following truth table:

NOR ANSI Labelled.svg

Q = A NOR B

Truth Table
Input A Input B Output Q
0 0 1
0 1 0
1 0 0
1 1 0

Making other gates by using NOR gates

A NOR gate is a universal gate, meaning that any other gate can be represented as a combination of NOR gates.

NOT

This is made by joining the inputs of a NOR gate. As a NOR gate is equivalent to an OR gate leading to NOT gate, joining the inputs makes the output of the "OR" part of the NOR gate the same as the input, eliminating it from consideration and leaving only the NOT part.

Desired NOT Gate NOR Construction
NOT ANSI Labelled.svg
NOT from NOR.svg
Q = NOT( A ) = A NOR A
Truth Table
Input A Output Q
0 1
1 0

OR

An OR gate is made by inverting the output of a NOR gate. Note that we already know that a NOT gate is equivalent to a NOR gate with its inputs joined.

Desired OR Gate NOR Construction
OR ANSI Labelled.svg
OR from NOR.svg
Q = A OR B = ( A NOR B ) NOR ( A NOR B )
Truth Table
Input A Input B Output Q
0 0 0
0 1 1
1 0 1
1 1 1

AND

An AND gate gives a 1 output when both inputs are 1. Therefore, an AND gate is made by inverting the inputs of a NOR gate. Again, note that a NOT gate is equivalent to a NOR with its inputs joined.

Desired AND Gate NOR Construction
AND ANSI Labelled.svg
AND from NOR.svg
Q = A AND B = ( A NOR A ) NOR ( B NOR B )
Truth Table
Input A Input B Output Q
0 0 0
0 1 0
1 0 0
1 1 1

NAND

A NAND gate is made by inverting the output of an AND gate. The word NAND means that it is not AND. As the name suggests, it will give 0 when both the inputs are 1.

Desired NAND Gate NOR Construction
NAND ANSI Labelled.svg
NAND from NOR.svg
Q = A NAND B = [ ( A NOR A ) NOR ( B NOR B ) ] NOR
[ ( A NOR A ) NOR ( B NOR B ) ]
Truth Table
Input A Input B Output Q
0 0 1
0 1 1
1 0 1
1 1 0

XNOR

An XNOR gate is made by connecting four NOR gates as shown below. This construction entails a propagation delay three times that of a single NOR gate.

Desired XNOR Gate NOR Construction
XNOR ANSI Labelled.svg
XNOR from NOR.svg
Q = A XNOR B = [ A NOR ( A NOR B ) ] NOR
[ B NOR ( A NOR B ) ]
Truth Table
Input A Input B Output Q
0 0 1
0 1 0
1 0 0
1 1 1

Alternatively, an XNOR gate is made by considering the conjunctive normal form , noting from de Morgan's Law that a NOR gate is an inverted-input AND gate. This construction uses five gates instead of four.

Desired Gate NOR Construction
XNOR ANSI Labelled.svg
XNOR from NOR 2.svg
Q = A XNOR B = [ B NOR ( A NOR A ) ] NOR
[ A NOR ( B NOR B ) ]

XOR

An XOR gate is made by considering the conjunctive normal form , noting from de Morgan's Law that a NOR gate is an inverted-input AND gate. This construction entails a propagation delay three times that of a single NOR gate and uses five gates.

Desired XOR Gate NOR Construction
XOR ANSI Labelled.svg
XOR from NOR.svg
Q = A XOR B = [ ( A NOR A ) NOR ( B NOR B ) ] NOR
( A NOR B )
Truth Table
Input A Input B Output Q
0 0 0
0 1 1
1 0 1
1 1 0

Alternatively, the 4-gate version of the XNOR gate can be used with an inverter. This construction has a propagation delay four times (instead of three times) that of a single NOR gate.

Desired Gate NOR Construction
XOR ANSI Labelled.svg
XOR from NOR 2.svg
Q = A XOR B = { [ A NOR ( A NOR B ) ] NOR
[ B NOR ( A NOR B ) ] } NOR
{ [ A NOR ( A NOR B ) ]
NOR [ B NOR ( A NOR B ) ] }

See also

References

This page was last edited on 16 February 2021, at 08:36
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.