To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Multivariate stable distribution

From Wikipedia, the free encyclopedia

multivariate stable
Probability density function
Mv stable.png

Heatmap showing a Multivariate (bivariate) stable distribution with α = 1.1
Parametersexponent
- shift/location vector
- a spectral finite measure on the sphere
Support
PDF(no analytic expression)
CDF(no analytic expression)
VarianceInfinite when
CFsee text

The multivariate stable distribution is a multivariate probability distribution that is a multivariate generalisation of the univariate stable distribution. The multivariate stable distribution defines linear relations between stable distribution marginals.[clarification needed] In the same way as for the univariate case, the distribution is defined in terms of its characteristic function.

The multivariate stable distribution can also be thought as an extension of the multivariate normal distribution. It has parameter, α, which is defined over the range 0 < α ≤ 2, and where the case α = 2 is equivalent to the multivariate normal distribution. It has an additional skew parameter that allows for non-symmetric distributions, where the multivariate normal distribution is symmetric.

YouTube Encyclopedic

  • 1/5
    Views:
    6 297
    4 629
    3 887
    1 147
    394
  • ✪ Mod-01 Lec-05 Stable distributions
  • ✪ How to draw samples from a multivariate normal using numpy and scipy
  • ✪ Multivariable Decoupling Control and Soft Sensing and State Estimation
  • ✪ Gaussian Random Process Input/Output Relationship
  • ✪ The Permanents of Gaussian Matrices - Scott Aaronson

Transcription

Contents

Definition

Let be the unit sphere in . A random vector, , has a multivariate stable distribution - denoted as -, if the joint characteristic function of is[1]

where 0 < α < 2, and for

This is essentially the result of Feldheim,[2] that any stable random vector can be characterized by a spectral measure (a finite measure on ) and a shift vector .

Parametrization using projections

Another way to describe a stable random vector is in terms of projections. For any vector , the projection is univariate stable with some skewness , scale and some shift . The notation is used if X is stable with for every . This is called the projection parameterization.

The spectral measure determines the projection parameter functions by:

Special cases

There are special cases where the multivariate characteristic function takes a simpler form. Define the characteristic function of a stable marginal as

Isotropic multivariate stable distribution

The characteristic function is The spectral measure is continuous and uniform, leading to radial/isotropic symmetry.[3] For the multinormal case , this corresponds to independent components, but so is not the case when . Isotropy is a special case of ellipticity (see the next paragraph) – just take to be a multiple of the identity matrix.

Elliptically contoured multivariate stable distribution

The elliptically contoured multivariate stable distribution is a special symmetric case of the multivariate stable distribution. If X is α-stable and elliptically contoured, then it has joint characteristic function for some shift vector (equal to the mean when it exists) and some positive definite matrix (akin to a correlation matrix, although the usual definition of correlation fails to be meaningful). Note the relation to characteristic function of the multivariate normal distribution: obtained when α = 2.

Independent components

The marginals are independent with , then the characteristic function is

Observe that when α = 2 this reduces again to the multivariate normal; note that the iid case and the isotropic case do not coincide when α < 2. Independent components is a special case of discrete spectral measure (see next paragraph), with the spectral measure supported by the standard unit vectors.

Mv indp

Heatmap showing a multivariate (bivariate) independent stable distribution with α = 1

Mv indp2
Heatmap showing a multivariate (bivariate) independent stable distribution with α = 2.

Discrete

If the spectral measure is discrete with mass at the characteristic function is

Linear properties

If is d-dimensional, A is an m x d matrix, and then AX + b is m-dimensional -stable with scale function skewness function and location function

Inference in the independent component model

Recently[4] it was shown how to compute inference in closed-form in a linear model (or equivalently a factor analysis model), involving independent component models.

More specifically, let be a set of i.i.d. unobserved univariate drawn from a stable distribution. Given a known linear relation matrix A of size , the observation are assumed to be distributed as a convolution of the hidden factors . . The inference task is to compute the most probable , given the linear relation matrix A and the observations . This task can be computed in closed-form in O(n3).

An application for this construction is multiuser detection with stable, non-Gaussian noise.

See Also

Multivariate Cauchy distribution

Resources

Notes

  1. ^ J. Nolan, Multivariate stable densities and distribution functions: general and elliptical case, BundesBank Conference, Eltville, Germany, 11 November 2005. See also http://academic2.american.edu/~jpnolan/stable/stable.html
  2. ^ Feldheim, E. (1937). Etude de la stabilité des lois de probabilité . Ph. D. thesis, Faculté des Sciences de Paris, Paris, France.
  3. ^ User manual for STABLE 5.1 Matlab version, Robust Analysis Inc., http://www.RobustAnalysis.com
  4. ^ D. Bickson and C. Guestrin. Inference in linear models with multivariate heavy-tails. In Neural Information Processing Systems (NIPS) 2010, Vancouver, Canada, Dec. 2010. https://www.cs.cmu.edu/~bickson/stable/
This page was last edited on 29 August 2019, at 20:22
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.