To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Multivalued function

From Wikipedia, the free encyclopedia

Multivalued function {1,2,3} → {a,b,c,d}.

In mathematics, a multivalued function (also known as a multiple-valued function) is a function that has two or more values in its range for at least one point in its domain.[1] It is a set-valued function with additional properties depending on context. The terms multifunction and many-valued function are sometimes also used.


A multivalued function of sets f : X → Y is a subset

Write f(x) for the set of those yY with (x,y) ∈ Γf. If f is an ordinary function, it is a multivalued function by taking its graph

They are called single-valued functions to distinguish them.

YouTube Encyclopedic

  • 1/5
    Views:
    13 876
    43 628
    5 251
    35 635
    1 243
  • MH2801 Examples of Multivalued Functions
  • Mod-06 Lec-14 Multivalued functions; integral representations (Part I)
  • How to Integrate Multivalued Functions | Complex Analysis #20
  • Branch Point and Branch Cut |Multi valued Functions in Complex Analysis|Part 1|Theta Classes
  • Single Valued and multivalued Function (Examples) part-1

Transcription

Motivation

The term multivalued function originated in complex analysis, from analytic continuation. It often occurs that one knows the value of a complex analytic function in some neighbourhood of a point . This is the case for functions defined by the implicit function theorem or by a Taylor series around . In such a situation, one may extend the domain of the single-valued function along curves in the complex plane starting at . In doing so, one finds that the value of the extended function at a point depends on the chosen curve from to ; since none of the new values is more natural than the others, all of them are incorporated into a multivalued function.

For example, let be the usual square root function on positive real numbers. One may extend its domain to a neighbourhood of in the complex plane, and then further along curves starting at , so that the values along a given curve vary continuously from . Extending to negative real numbers, one gets two opposite values for the square root—for example ±i for –1—depending on whether the domain has been extended through the upper or the lower half of the complex plane. This phenomenon is very frequent, occurring for nth roots, logarithms, and inverse trigonometric functions.

To define a single-valued function from a complex multivalued function, one may distinguish one of the multiple values as the principal value, producing a single-valued function on the whole plane which is discontinuous along certain boundary curves. Alternatively, dealing with the multivalued function allows having something that is everywhere continuous, at the cost of possible value changes when one follows a closed path (monodromy). These problems are resolved in the theory of Riemann surfaces: to consider a multivalued function as an ordinary function without discarding any values, one multiplies the domain into a many-layered covering space, a manifold which is the Riemann surface associated to .

Inverses of functions

If f : X → Y is an ordinary function, then its inverse the multivalued function

defined as Γf, viewed as a subset of X × Y. When f is a differentiable function between manifolds, the inverse function theorem gives conditions for this to be single-valued locally in X.

For example, the complex logarithm log(z) is the multivalued inverse of the exponential function ez : CC×, with graph

It is not single valued, given a single w with w = log(z), we have

Given any holomorphic function on an open subset of the complex plane C, its analytic continuation is always a multivalued function.

Concrete examples

  • Every real number greater than zero has two real square roots, so that square root may be considered a multivalued function. For example, we may write ; although zero has only one square root, .
  • Each nonzero complex number has two square roots, three cube roots, and in general n nth roots. The only nth root of 0 is 0.
  • The complex logarithm function is multiple-valued. The values assumed by for real numbers and are for all integers .
  • Inverse trigonometric functions are multiple-valued because trigonometric functions are periodic. We have
    As a consequence, arctan(1) is intuitively related to several values: π/4, 5π/4, −3π/4, and so on. We can treat arctan as a single-valued function by restricting the domain of tan x to π/2 < x < π/2 – a domain over which tan x is monotonically increasing. Thus, the range of arctan(x) becomes π/2 < y < π/2. These values from a restricted domain are called principal values.
  • The antiderivative can be considered as a multivalued function. The antiderivative of a function is the set of functions whose derivative is that function. The constant of integration follows from the fact that the derivative of a constant function is 0.
  • Inverse hyperbolic functions over the complex domain are multiple-valued because hyperbolic functions are periodic along the imaginary axis. Over the reals, they are single-valued, except for arcosh and arsech.

These are all examples of multivalued functions that come about from non-injective functions. Since the original functions do not preserve all the information of their inputs, they are not reversible. Often, the restriction of a multivalued function is a partial inverse of the original function.

Branch points

Multivalued functions of a complex variable have branch points. For example, for the nth root and logarithm functions, 0 is a branch point; for the arctangent function, the imaginary units i and −i are branch points. Using the branch points, these functions may be redefined to be single-valued functions, by restricting the range. A suitable interval may be found through use of a branch cut, a kind of curve that connects pairs of branch points, thus reducing the multilayered Riemann surface of the function to a single layer. As in the case with real functions, the restricted range may be called the principal branch of the function.

Applications

In physics, multivalued functions play an increasingly important role. They form the mathematical basis for Dirac's magnetic monopoles, for the theory of defects in crystals and the resulting plasticity of materials, for vortices in superfluids and superconductors, and for phase transitions in these systems, for instance melting and quark confinement. They are the origin of gauge field structures in many branches of physics.[citation needed]

Further reading

References

  1. ^ "Multivalued Function". Wolfram MathWorld. Retrieved 10 February 2024.
This page was last edited on 17 March 2024, at 11:27
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.